JFIFC   %# , #&')*)-0-(0%()(C   (((((((((((((((((((((((((((((((((((((((((((((((((((" ,.Fh Ch@ 10D``DBB h4 @dX bD iD ІI$TBB'$"`I)Eb`(m9@0hb&!1114  b` Dh "lTH)TAiN  A" hf%n£!aY4hcC"5J2#Tզ@ #(a`QI+JHB8h@!!!hSMNhC4$11SB!`&2Dc(p*`"XE b!IJ&0C41 b `hL0JHLi1L -XX`ݚb% )*Cp& ! $40)!b䜢hC@D 6JJቨ4B!`b `0@ b`&ё^IÆ LO7dX h@)A "I`6H !L'@ DQ B!Bj4  L@ @hb&%$ D LQ~7ҜtZ&pӘ b `&)F؆` 7DBB&qI:LVF2B1 5iL4$ mj4 @ @ b`0b iS` 14V1l˦I7 @` L&ȒB[lC!FlIY +@!"!%$  HX J00CبDE18! L r2ϳ>Tس:=8Ӓb  & !`) "0$EMSIAL6D$B`&BBX&1C CT4h! @@4 0Yf |,tCE\T}nn` b$1AN&$ &IS`0118` 4  9_^8B14yꞿ3wlK 7 &@ 0@ @ `Ȓ b( +$2DR:]Z3cqcAȴNb11@#@18b`!upyt|z8lZ+]}3:zKcwA9SUU5AJ   2LUp*HR+EUEvF2qIW8)-JYDUQ  b `16!B& n$I9y~yntpX"QE,m[&C44 b ``@  BQ0&:Qud J7*"S-5(J7U@`  b1n.2/| ZrJY]3~ڕyצ1Ͳʬ3}[9NΨWVun}Tc~g6g=Mq6}GKsx b``L!nu"6ڬQ}_4 4IMtSҫ(610 b`],k4r:\_GOn骻q[,C*ͳԖzhUݐ9w L01 L& hQm(4d]nNiF wfG&ܱx*uθIbBʤSnܢaFj(@`8箄Ꝿ&IltgxgɻM%Mږ{z)]vSqUټ& b`0CT 8&`% '** -L/(4$cךRjp.h @1b!  0n7ʮB Kt}UF˞tr\7Jϖ~%Ҹ[!hUqp!&7Č1] *O4צN.Ǽt0!J%S101CC&1 Lh b bey ?fW7Ƨ,ʒ2t}֚m[PzvvF@ʀ  hb @%(#!!bBâM4BF=x Pցdd'YS̷ͬ 118h`bSv\>}Ux/ޝ7UI5h,pܞ^[U9=&v8@I!(XjaS,S3]av(KWP4j` -#ݒ7Jն&W"1t!^0 ! &X2y=yomNz.zVwfKݚж26ϗMa5L0C]q$8EQTl;yj]\U:znT62U f%uLb!  o7Q/{jyϣCJgS[oޮOO>_W6O~oC,2T`44\3zc(B A\cuݛU4컗AK2B6vǷ\n9WXQ,y:Bz` `4 @C&r_'RdxyNu <SQUM+#S⎬7v㦩K]Jy:KX5b`!!)*d 1RYn+έӚKUJX7U3˟EA}lŪe6@@  b b4x2\>|z^WvB{3^S׺Np^kέ㜅VզhW6rw{xz=)@h+ !daYZC.~mQniڲ7|0Qgj_J}l;8Po)Ά>4 @dtsNqОgͷ>ǻ \T`ыfNf7(pu9|]͙c{#(h1 @ @}6yn;*SHI*Bj"9̻&{y]4գ7>Wf~םZ0niMRsTH/NL` @ `/9ywVY-tkZJ~sGCz|z[cV-KX+csSTWu6kK2"2QiM b6y֝^]k׍ʻK=U**MVK2R.ZE9}v6{i1m]jZҌRUJ)De%dR*K~eS>-у$eͮsuκh%lGNl8#~:n5Yߎqf?L'@ @ojȲ*d.ܴn3q$ngլNKbS%{ߓ\qM(zOk=R͕zX_~=hE'J]\YA&]ƣLk4>5tdUFm8ʋ+7T+K-%3oU]kRKV=cNjkCiGY)s󝧂뫟CX=na\^ RgOA5F|-P_ew9jWM;暜Q}rUh;p_>|+ng<%̙uӧ>phss.SE67FH[W+8sc<=3Z_FJ^Mz('.Rǖ=<}<=hr7Z6v"pV-:jS٩}vf2UeYN\K JN*|y.!~O{ k#;1rt݃:>8sVL]*gs*-dY*Wdnb b&@?=1Ms*|ZW3VY.+ӋcSZg EWfgvZNDeSBWʋ$ӟLu?CԎvܚ/\hُR]zu3&UWZRvj^l[֢3u[ةZ2=Ox]wԥΛbyu͝p뚫3UsaVX;I>7~xgpa;_կM5yĔ1dD׳<K}*D&P&@18{N]n)E=Mg_811YGE) "J cMQ]e3>_Q=:f]IzTQS US-izΛ$Iv3Q]]JM$[VT *N5-eBHJO<侴euRVzseOv--m(JƬi`jKڹW+n}1Z^.sLyq9}4/sw@ZH!]M&y،l-nq沯Ets'mi9E: Q"Z 5ֽC^mkV[ʝ>]3n2,#\B `T(U6-N,gF~&[bB^w*<=UÎ+mBePW:IPڪ7䫲anm J0 Pg=iQpڎz\~-kRqXl9]O.w}Ku&kSuHS $BRee:̢r fnYmSE9Hr3PQuVE 6AM "vty|yU.Y!nm4kqB.N4UdF鶫,qLں[e ⒅kYknpwBϓU>^Ѳ+214E8,:"=YվٛG\N{UǭJ1؆( -Rd [ۏͣ1f^6%fF$sB̠YUӲs]0 &\Z\_dL)f{!f7}6_w5SYŵUUYe]=73uԌybv#3]ё+fXx?ί'jĪZ'KZCOmVg ٚ5![omjbїxue ؒuU̔g5ziW:7':]Uˎ:ur;ês솅Dq#$BGVQ}cWQd.ŋZ5yrhgg^1ʎxGo|u?=%[V63fH41ӿFBwwnlӯǵ*vp$FJdi::qӏ^|{sF5skb+b;+ɳǽy9mIAJ1ɚz9j]<+htU!lNZ`tafcʍ4⁳G/LJ|TZ5%TͲBLSd-.ط%ؓ5ˡæRdĉV bc@$::v֋oV\fwtr~.V:2.8n.YX͎hk1.Jvտ}ڸm볧-%\s^Lݾ}fƥ<;9 o-^,/B9T,ųXҬ o,4 hxiӛfR-zlFfR&oSG/G=fl"#o %$4W٫#1e;Y(62+W4:lt#:;1[G3YfzseN8dًI8Oy@ԉ``&!#8Hs3_OFRثRulvth;Ì:dl @TqVR* ˣnsuX4%y:f2h]KƣVi%:f'w?LkU?,iÑIg]B%6aUiUg&>zuƧM_5^^Z役:stNg\Y+6ٞEֹgZγV5vkD-d=y55(&: F%`Ȏ-@ 9}l|dNPGDWmp%܍=mbZFlӺ23jqъuپY|| FxiP+$'*싶M+oEșPBf x8O;)3:!319t5!K kϥ:o 鞖3;=QY٣ܘ0JCM`I5f|֭sb)[b6xe8Ne!Bq2c8&(Nv񺭁TmdB6AI"^OOA(D#4o,i󶞼 ^ϯɽEz{κչ  J2# J0lewn~̚!)N(џLbU9:x}qҲ6m~/LmҘ>F蛖޿q]V FbRF|qV]ب5ltO՜&e\u5N\&\تP ʕ^dKN}!F'3ԌIT-!Ќ\%||&zcy].:yٿ,n㨍vL1I"5I4ЇJ+y_4t[Aݦ>f:i2\2eP۱kqED1g۟NxǫOMJ4uH\EūB ]I!["IHl>GW t0peEN]2_g:nm#7S{qR7.ŲAVL,qhJ A$n,iօ7>]0g3MiKkK^#PJ8@LjVD,kU yz̪|NKυI@.v}5wy}~cLIWw!o )E(JT1RjґW{!#4}g(CD%bJ+WKO+ &3doFtr걤Zabb!ͫ7%ѯךU-Ăj*ÿУTҷ=|<=X[q6*iC"(d'"$- yyTnh-|z]fSn'dZ1Ky} />u_3\8 Nz8~GLP;iHvL@`SM"1`8x`q/mAI}E9qOןơ^r2U`JP,cBkW!$I)d+bܩir+уXJ-)~tc>&ĂVB-K_?z$. h0R)F@9"ʑe>\z\;5P:M9u9ɮsaOz{qҬsq6ȦN@gm ;\$8' #R#%M_28ІU[j,#"˟P=++| g!4n^䪶 i5P$ϮYCc`Wr^010#Њr3$H ۀ29# ?ӯ ,q=ی;G0O,, 4A@83s3o !<5-׼ 1?430D$a ;8cO4 ̲9G&o4 1ͫ?8<3w>9? 6 8E Ǡ~ߙs,< ,/1\O8<:Հn:,ӽDb.4'8+Jr<<9]+rˑ0 <8"CP/ < s c?2<O;x7}000 Á(N5M0ϯFo<Q!w0 # L4Ҏ +1`=LѨAuM 8 @h  Ϊg0[8d_o|n00 8 whhtS/-ŸsC8 0 07o8$ڍ"ʘq{ T2ѱa0sFsrљu[ ?Nz2"8fɒ{Oc1+3vzM|"D:I}KYaLω` 0 G+(+f?)ŖR+}0q@{1'7#:w4VO0 $βէFS4LBer JeN*/ =A1=$l\Ӯ@j.檄kz%eqe^PU콹4x=3` X?Rʺn.Z׍x)y"ř?21l6oW5O䐘eނ͠@{B2y^%kZ*ogxBVW`h9mh]zXX,нP,ۍ44&}=fJ4E6~JC 06}+n'Ui1᠗$ClLE՝)[T@Ub̶&R3[gXPB =J(B41|xs}Px蒲@[5"J۲syo#$;X#L z\,;tEfwҸ,=ěeӽ'O (7=u~*"x(Q$I0Nm5ͬz hEb0?%0+l2ͻXl RH#rA/TmXb̪?>޻|P:}f}Sb*QnW4{5\@9I{;MWjMxs1;1dY~>r[WRlW2 UսKzrIv6G'1gglOrm"(zLfo`Tx0fbhmNW= [c3 $'4jy32`$^vԩWW|[|{TFg4CPaڝ {X6]0[Ö4W`'LqϊJ.,3U[1[v Q!!FuZe$ eQw?ieg]TL-N @X-nqBٸGV'd H- 47O3y=Q ,swwF%"wXMhO{5! p:;K(o;1O6`.9I~hŶͱ]Yqưpmaƾk^'y; S!",`8t侑5qGZw)Ayw/<^?Oz1tӪ($S]n91#T2yJφ |R|3sJ(]U+G{a&Pd>i6ClR|2Ռ7Cgخurڛgs.3uo=p,!5bh-?KM)UzUk81ְ` ZIy6 qJN-ե5ymχ7cl,iX .CR oz⯫y/R褻kPp20%˄c`6HapC[q7C(Dz0DG ϴu{m[˯Ac" i;?vGms$יg,h?(sc}^?Z׼s8&IGhDm?Kosy[r)| Cq{د}4} /{ePE4]s։* -?ۉ붻]:+m'Wum}njj(l*J }mKVT~ 5o|YYLPK,"jC*6i<}}mg*ޏ<2cs|㐓bI/v}Hvw gM$YQm<}}}}ڡ, 5`na%mv}]}UhQۼu,0<2}5uSU[-3lMUQ }d[a-9qLԻƥŻIu<<}g}mD#͓[}3qԗq[\^|+ (ŵP }qqe5=߷ (Bt597=#a*8^ȁ 2y`Åqi}<887w]Գ=xQD\}Dr)XI 1ϻ( cK<u6YqJ|4tu<o0[$-| 4&'=M}R&ʨLs.Uij M\_҂B!wh,o3g]o4Q7u ?o.\o(iˣ&CpLTz7ʙqoyv1 ԄajAĕ]ȘYB1/&aжiv1$J]I1ڂ#y ہ+-AiVmmRYY̺}S*_އ #׭qrBv YR̿XB=kqYH8Dvq%=j1 PUjץ0,#>!Tף,8Ns|i,:$BWpہ0NNʼTrJkY?4@K_oYa @1沩(SgaA4Q6HwF!J`7pVhָe"֬jO>$,JdLTf9BV;(L\ h7 6: /[)+R1.?`2UM|r*Mѫ/-?H@l!M*"% d͖<HbģHo몯H^nTG[-9#%9I"9MԾtd%yhGN Z`˿LJܘ1 3Zޥ0ږ[z hfɎ$X览N7a./m ՖG]8_:)]`9xw(F.&n$6NJ?[^F GYdn΄΋9>z nf`~@lֽL&".qj'1q8hWݎ's@;B ;fdBy|q=S$`RD>]F ig ^%"MHt4SIK+fe Tnf/޳tdy%[1!Jdx'@^PMoxMS{TPfB|^*}'sUC-JA!AFx(i؟.C` \nx<졆|nxYPd(n`/fL#2t>#DũE^?кq OmNkoȚ6Y?7*&-BA0QRj`鋘LϡL61O{˗&T܊TΛ7 q5tfԯ09mKxt\6j0"4x/\ҙ UL}%jXƄ QYgк87d]G#aPJHrCN\xKg 3]Jy1`\` Ә![MͅX\ΖABn %̃rd@fL*tf]>]x*G~|ˀ`1|>;;_`GEqIؔ嚜 o3TrUsqǣĭ`FC1No}~`?52%f o5P  B楩I<$̙G.4v|ͬa,U+)7v1yP&_6WcBa1g$љWx5G!TxHRbL>}UȈ26KNV_OAk-eT~0 ""3›O1Pg(>L<^F,hF㘘ټËlauVGW5$Švչ6b.3N?/4Ow!~& <~0"1rvb Qf0U5Ax=Fo3S1z9f|1/&E(q3dq1&F #(Ua<DM@Af.gI똏fnD$;2?05(B A) >0Kp|~ED6EFZFv癩>Pڥ0 ӛf. Tk3mGVc0Qf;,ƥT`B"ߖ7*s iN*3("U FbqBbZ - ma_\X5 3.(drb;R`@58q@T&bfj\|{Tӹ$4AهB9itbĪہ̮D{ud\%jc5Ɍw,Le"m̠\xꙮkC ʔLD鷕x*D1(~?P& f&3Y1[c`J LzARspa\|t(TWJlKT"z 3 +ɨ80&]>Mg;0Ll&Ll61Z { MRSn(-=:fP& 8]!ryI'U,ynX\ n?sB9$̈́ u6`6/Y3Sd%1)w< 54QO8nYSMd&@k&<[DkcQ>&\ [%N:VA g08AyG淟R4qډswD:AOyDm<*\Mg3zA0c"țDɄf. ,jH#U6;U}1M 83y|kcBk889?Lچpd4L\W 2g&SLue~2-2!¦"Ӗ]:)&m;4bA?0k8d?)}AkV,&E(hڅ۸2S5Aq0F"UbYө䉗JF:6ry.6CMw> b&'5M{P|]T}8_3P,X Bc{A(7g9кӅr(55HDRiS~I:M_Ǐ  ZÕZ-k54ZV3Mg2/̹ڢiYԊD͐c]#6чu>Lv"pAFaJh]Q,MFfܢ&)>@CG(X%ߒhF(m.U?i.q.مw2c('kXIcbZkXD&#lGu g\)KlP#B`P[y}sR(UpAn%MW>fqԳM/|5FOm?ٷbx*ٚ-X9BP16ճ0ԲPP^cuyLF*e Ù­ -Ar8ybf&l$>!WQHQ.TIL ,?y"zmճ65Vq|L_"Sgϸ 72Ϸ#5Rܾb{["R>#9&e0Nf|6s5 ]?3:`"Γm@'gfLyybXq #=7VsE2%ĠG,y,n~"T~ _eXt^Q70ٝA7%ÑAf%3Vr(ij7@{_a_}od橶bdgGGɈlw˜' u.fYRh96i[9!>2p@*1&ELf`B~TM3F᱂\N`J AAH |e0sPJ|1>'L1L t nLQ cqsLUIQu4^a )u; о`vNbJP!1&Œ,.Rݳe(Gb}ޠ06mŒ`Q5ܙ#[`hP 6 cu 36`־& :3>SmxuxNMFdԐ9$G 4;++!>L(bdGRG pgʟ)3cܻ ~e3Hdiѷ)"T??ŋU"aENbw .SP@@_&l*1<8arcj/POܰ!48v ˊ|w3PrՄmCju594"~Q:LA[&-ϊc:f#YQ)="T{ajW><>D8[ǃz ExF6IOb"/"e֜965 &x&c̍h ~X9|K`01gm; 0md<Ӏ*3 >%]%Ӷ>4\AC85LY|@(vu{]:d5c::VzjzF]g.1dM3]bQn* "'6Vӯ28 e? Lu3IcaZ|T؉fm5:gyd9Rq:nǗ0:6ZvsB`G˘Lh8Oèf^Jk깠kMԸ~"nCop&. mS̹p{3b\ML;1|op܍l~_~&7<+\4g a+2 k_ߙ[ S7"ĚU@ѬGP&=7]=(!>cdːa,:~\r?i>ij28̵=<vm<)pc `1CهX õ{0t91 _`'cQf(\ehP" #YA>Q>yzS7Jy 1X Bp8s,v|G";_1+ks7#LZpڐ ?81|+fB\OB8<aMf*ȃϻo~5yֻ$ïb91LA1{xU5") E`+byg<\_lZ3aE c`;O0f,KNDd0XHN3tW3 OlHCaoUܒ&"Pه[2 FZW0'KWOt/ A δ 㹇E5L,JJ6DmZcdtRf w'1h_bc|ith\h/{XWfg`r#v=s<\ĻlkRkaٚţO:[鿿ogʡ<|h1TqNau3.,Y`c! Di3qۙaVh~ˆE<4бWf A{g2rL>8ljocMCAMO ';Q|Tv8&h5nqW IUdO\9P6y<fG&OT|8А&-22fp\tl~4zllCq] L9wB tiX\Fܠo~h?y/~AP*~ OãR(q` SfKN gfE]4hɈ6c Bkܮ3p=; DBAg0? =ˁS|Kt2ci4F3gJpee˪*~qwՐۏa4b1}S55 Cs EbE˸Q#4yCv{L^%XЈN6 ǭª&H*qsWv+gFuAƢy)MfhB2@PC '%}k"Lϑ9"z]BUΝ5@9&5';\>%H;u tۄ8V`zo3{@>'_l6dG+f:;A]BM;@D87"u@r2}t[ ¥4ll&>r!\O6&}n0!=`8'pftؾ=k1Yf(|uOrZn4(cuQɞ /L - T؊ۅ<ZEb*~&vߐ%+Fa*YSFM7/n&d5&i\>0@c"h#h n` `8 >=Ȍ(u`RǑ46`4{&R(H``7 abo"`ݻ5,('7j =5f\ '``g1|L˜"Vi[3HbT1g>`|č米?5_r~IjY 2p=kX0L4jLP-!Pr/gQm37}魻N}Ri`C4ŋ6,]R=ӷL#)(eF'%i&0L| 2UOULjliIP|b:}Bd_]vjvSCWe5$Q0>6!1A "0Q2@a#PqBR$%3?l/;?(g=T3iMm#D =>J~¿h,%_\rB>Q_qSMi3*:t(h{TR|aYR[oϧESFZ5`ܿ07a_8")&])5cbzԯF7KGz(JHP(F3X>?T6ʄJJޞJ dͰp&a)x]R~7NɘY18hHRĝL|2~#갢Sn<ً1ѓr]ٴq'>[\LoQ`צeBTf[ٌxmcgr`_ؾ!ݐ660-EQ  Ɂg@SC^&\z'Q8B= a?)?P:U?N@*>4}BrgX:;\N7jМ QK&ZNܯT6a6oa㸍練0d8E+`rVuhhhD3q=x멯oݙQfg<x?ӦÉV2?=`͟H$DXt`?TEeS'5g !{Aw~O2k'%8?6 1bmxls48>Hx55T[|G"0~{L`KPT4oU1c6|OF. >"De? FasQ^ʬrMne@3`d4tDDn8?2VC+VxHLeV748M* qU?M7& r g.Ѵ'o&\̀]` MqF*D,hA14l"\"@&T.f<r.2)&}0i#Qdƃ&nD3L@|@r"&#ɍs Eړ:cHfvd"G*fA\YB@S\X Fngt&,Yr*E!CDf mbiwd49Аc2uPr%&PCLlw\EP?1BSO(7#(☎B V0h@0SQrfn!kv?uw5LT!E "+2%}eAv`@Wc͒30+26Tc>fn<RT(9ֱO+n&W˦?UDZJAdQ`ZBAq0e*`"㈊Ld0X36fR@, #aJ?a 00GQ B% jfe WώE7iF ӏ(2}1:&e3A:%E]DPT A(DF=YTUm%d EPy<@ k mF^ft *Gs\DmšmAK列N2?gI8.0#%0 Fb. .f(FqV&P:vhtCwb-& ˇ#Lώ&#E!Rp'Og( xXX%,[V`Y LX!65mG],|Y*> i )4wdDs\f44M5Al|J8 f 3ןfyeSl"3]1X̸O+s"saWqR)yTccLCP, ;qh 4}y!IɴEv{9T2EXٚlG&@&W,j 3ǽ@j&zG&bLTno'cƘ<OLx=?(ؙȵʴRZ/R<֝Mq, nTյ$Yk] e`.u'V-w!h cOc4Y61&Rǁ1)4bG ,Cs 3'B@+1bg[Q4‰'˽&, o'"T5=`UvOj?BrC 8C XP ɤ:kȌMԻ1&ogG[@@aQp34_B QP_ hVbb C:c-h.!A ω 81J[ل'&)(ۣ,'X)\A 8D=Bo]7[{1QCP3&#Ez/gܻc~]q`QRf,eT ͤL=5#MC:.1\PT-8w Gan|c"%Y0LMٛ&L rsSd8u+W/Rè@E\\٦զ}1zQ,b~;"k6)F:YWc2TLnjb6ۓ9.><~1,NEn '74o_(*lD+u wӜٕDƼ@G3(e&lQзd@l. ȪjÓlUٔHn!:l"fL9v5hIu ǍL-o7:7EK.crmը௙ u3c]XGȘS2}#XZ?dO)f!ɐAbfG8T3OfpiNrfX)4cN2"F4!ʕL֠]ZŇLɷ%~e3܄E؈a/D>zzc=5V>L[i'b 'C>R#I( eR@9修euaFt`ŊSN]#bqk 3 j75lU*n}jOMWfUT0nf"!%zːc&gڥJ*i؜BV n|@7:0}bf\7M@9@gPМ`i 4j&p1m5?Qfk!ְcd luR>L'м̄&*}?툊怇J 0MfM) NՎs;)rlT=" (?9ɅZul@;%R&}: ^yVԛ# g-@@PRLg94^C>`&\.G7gйUL1 *: QDsAjqDl2-4u7Eox`܌c˼/*'fd*9㱆 D ;da:K2gbeh4{FҡgL |v3 }P ?tz`Ț&&o"{preLB$5fl L6وAn &3za)ϑŴ(ϩɄMQ\ޣ 3>=v~n ԐVPTWLĹnt̛3W=ØuqyYؿp}:O?g'ŷY(vf ,gQ9AL^?1!+n$֢&*`հ3$Ծ &5)\\@:&0E!iS3y7/URA<~"1e0YFNioIB;?Lpl=1V1w0`Nd`$C#O-ϙp!vkZ˹.fn|NɁOBdԽ(݇_-l3i0FԢ7+fLe9*D h;Ob`F1<"ڑح(E`Owֻc(VUlY{slc5UGESowѹ oy0Q{v剷 lsI6 FƖ8cimJIΓ 7TQsQ9F $h1"U/]Ps2+7s73YO|U|ΠS vcB=Tǘ>aۧjN3(côRƣ){Z;_@\P#؜gK=2͸1-qs:"1+*~`Ρ r"6b&mη$j 6>aTPŚ#1`R FD֔My$fI`ʻC3. >aӱ*1%g'i1lJfxjPðvېnk_%8 Q)RY4SLoɧ>lhđ&*&"ϑWj 8f_Xv3#B:;116&@caS0?`1sR37-b!q7Fa+4cE;S&Z3t;rq34)jQAJ!}c]@>`E3w]ҳ/8pÌe\I›, "1!cjTfb[if_i~ߨ4=ndY(L5cGQ ̣!5l=S2w,π-Fk6&wľ͆,UCJgP9cswbPݍ&ǰq0o*`C ȕ cF+/@B˩5fU #62‰(h۩2b`m4xm1V/lZo}VjiT/n 05w2Ʃ7b`<> 5٠%z"wv.n,LYWjfJ3wBm(w@\D|)d=Yqs?=f} s}&W4&Ĵ Cj}34s\m 0 &, &Lm3 % LTʶ.<x>FTLP"u-8 x (@QJy̨ʂT7?1}?n (6u^#>eh@Nnf*I<)aaԛ{}֊c]f{ UGT;,ͦʠyӌr1#nZE标80a+`DT\˘O(ٔa7`N[#6H#[YIU>'͙(M:.e/ONfRk޿> aٿ`G?~!^a£SP)cPD"l& 6ȇ)1t&zn|0dAc#'Calumb 4 ֩L=fݸ2oy.2I$\@=%?.$γc.U' &6yhc4~DžYz<fc@X~è81]K n DRk Ž &QbƣP pэZ:ljX3ʕ?ݎѲ(G` (z(PԅB~`kS6xM,bmwQ_ 6rMp{CdСG՝K cmؓG'ӲTnTM4k#Q{1O\GeN(QbsDO{h:Kihc'\?3(PBgmA)g 9aTq%#8N0m^T\cXQ%…^(/au9羳:o=3 =n-~Q~މs>0f' dΟ?n:cW=vKCiREd]|E9=(faݹ[9d* 8۳ݣeJ0}BKtLdIPGcGTıa+6M/" e'af[:^ 03~z?7*TqG Px{e`Q+yh'*94omJ(1W/Ɠ^+LJӓNJy-_$^kS h&fn!fusB'j9pV!8 0(蹦*9U4Xgc{ZUVӧw=Wf8TXңe\we7D ;>@SZ;VjgqHjP9 z#"bȯpcv)(et+w4gQ ,{ Ži$5EX:m/\ntXG\Frv~,Ԩp5! cL%O*Lx yŦqdGh 7cnSz L mgZl0G\dSݼ.UiVm FVcNH9dעlUe^,.I&Q&] mѝL/賀A5aS4s|CQqpoIH;|e_ -!Rb}/2tu #r@Uy6Tܻ0Phu]Ļٹ_@lrLдt#T1OS76~uwliΧ[L}LLiM9!7_O? IuZuNv,/!P25䷴CrwhcVI *U5ϢDiYLtaUvp}:'{?]fmst' LzMVrMMʮ0uFS naW7Ԃe Fk;B>Ƕ5D7w2&dK~ُƂڴ,;2Z{CX S5Mh?-$JfID£&x,-q#DQO2tj@GI @!Sv.2JvY*d &V`~#=27Z,TrdBCdFW K Tz;x5qTæʙ`;*kHQ&\JyݳKBt fL :|zt^c;`3 +ɀ-V;t)>au?7Xw`GRwAWHSnNeII*pU)ai0i8i9ͧPѥfcXUV6zy4Hg]NJ<-=֪xbS3fYOC. Py֩+kYZylg 9j:D3d\އoipwa6@nbq#\A}#R5Bl p2U]& %QΓ~3TLG]BbIU MӒcl*T&t9c=eC'~:;6x5@M4 [BnդM0I>򫅨VOt525j=wS1 0b L{mkEUm O *c T̸AiD? N;Ӛ`s^ǀ檓N|sPL:6HI?Eޙ'sf2M}'TjhhwL)? 煨 J Nu'䎉 ԅB4NU|)Tm<8B0k{2`i &KCe~Mޚx!%OA!Wk|!;T$S%L;kiTxG ײ4AL&ТJ.#4hmGhZ$4LtUeˡK*r{:s^D\TwPnQ[t\5ee=UG7˞je0GC,T8|P}(lsjhvwdOWgUtr;\DM)eEOHM >Rxs|BM:M}6aFbD eQ1[߽?P 9ke6N|hyD:9jpj6?ڎ-Kz*sDKay %^цAoyK)4nj]ˮ78uXjz5"汲!QQI=75iͳu}Ձ;V*}!TKC8nys]0etPmaS`CT*Tvb:ױ9*g<L0ʧU|!&eaL'϶DM$g53ZLk)#-S'wDcwE{0G;Ii#6?CrnC +Ϟp$puC=2oY4t 4FC9/Q:~'ET\t?T󯺰u8{C3B+'^XdamZZM<:}imް׎D+rKanUi*e"ςZs2潤CsS]sNRζqFHh4asۍaxJG9 ̕"ks7u)ѽLOE>>.suU?&hTUy}T!@& ?%̣| K]yoU#p#ZUDdNl9!R hNNg0[[o&O@p/ݯC3ȦRf+9إM)džA:J7@ˌqOK y]^3cNDѠqkXX~Z*AW,&קk*qglamFtqJ-'B|m>hwk!6!S)yBcW NmUZUIˈ.Ϫj܌~vFG$Ba;fVm:k x]^GN 1t /Tۓ@h+¼rW2gOݗ.Jxl"y%MzE1[uy,s-p,MTo8xʯ k $1Y:ȉ&̨;ÃVߧi dˠ "9BOȧ訸; i]c-{p ԉZ°1gif2nv2ZCW5[Pup|i ԜRʨX}I4w@Mny'K):\全9O%KxA Fn_٪*&i {%.*È*m &gR$Le" .$8OTT\*H:~F_ 5BF1ͱNrk Und*.|sޓ=Ld*6x2 v@)I/S5=%_ACFTثZ.xÒכxfd']%J܈#Ul4:({.|uꦵ'j{a~0r9#U4!apAd@ȣ190&hM_Ē)UUmsM%d 3o8ɵ=k:T*qLwu]h]chʓK9:_ө41{y.n|-@Wgl(:\D4cm:d Ow<_T8biS{d.ڃ(!UߴUMo7LԨ}mp:O: ^5*|MSK~`zSm\T ]& Mq+HTK YQR`s3΋ "'NߚܷunKv2/o㖍`vl&iA:VmE,9zg`̞>G^IwyTШzOM%4&@*O4; ˾*=}Bk?BaoA6 Csns M`Yy,"=S3{qn*'ڵrrՊ||LUHnJC) ve1/-ѣ@U[Uȵb*omx`n.Ӵ>*SLUZ *Ea6L\UR\w{g6Dhk[g)LdeW02BV5U6U,— cG `LOU8}~ K op|4q9(\~_=m7CdxH9eMl*ᕉ1Թa2D(܏TaBTUՄf EPC ?Obu'5Hk8G$y*cCrՅrM9Nyk>GTXdnoh4Xj;]9#YM­2ڲ3*joEARzeh@rküOWwZoU^69)'Xی;kߒcN ]< s'{lp Vi3R[ T`LE^ GS: P L}} (႘Ӫ}AlwEZzev#޳)Ȯq}C{bSֻ;IT}6s]:y)\ֻ{`L;%{zFKO}Uv-oHhQ2һK Y~LeڻPrDMwbby'rcTL$Z\2ǸT+*8Qt8]R)cAsdxDz6CDagXܩvk̦uQsdPqa|2ۏ`V w u6Fzho]m&wtX|>!<]Q1Z\ӡ݀ aȄ[qasUM>XrN ~LJ 0H}&ɨj=ʿı ^_> us{39+Z~%iv#03uO_תUeq| f}eR:,E ۗ.{`U\@ dgM04c6cj R3Xl@{n5X1-fࠉïNg~~wsDR:(rJ"\yŻ_o=ʼnZ*ѻ.4a*1uaouُ$I,)c[F@^ TGR&Mbnc\wMw*vVS6yL8džjvU ԅ@Mvy{D3=rYSkC@V@3QbP!q|Vڎ#Pf2{F2}!pT{M7T{F\L_0[5ZtTgi]97Y.ըfJf,s'D:6Yt}U4q-4cB>+ cmƲpvmh:ZGf32'k#o<'' _Bcd'CM#fp5k,;OV=G3Muj\eԕA-e1 ʬ4l9l)hÏUITk- y޻PŹ}ڸ50yQ'U2O@!T<SF6/H z7?XN3 BS)0-9s!SiTUw.HҚL~)\eT{Fly*.,Qp:gy. h-O`]}1ZPkP t:rXϧ^⏉8CM2c-&,y9MvXމCp8fmJuY,tHS]k:&x`!ۊ`r)lKS».R~~J9iuuވK{лO]W ?"Nh(uBJm췍܀sToKM.Cyho6{`CCvYpv9be0U??D *X~ӡ_4T'"ԤX㪥JjtđIu)w犏aT @{6X|Ml.rGf!V3+UȔ %Z|Ujze0ֹ^1OT>0 %2HX'vN+Ҝ!7'hp8+v.,R=Qѻjxѧ'dMH?HnX\=3AuĻ>^G_m 8\K@XAAk" +YsUt5vi?cLhI_5 <)JC /Ak\6,0;&)s h&q9SKU@^5_,ͱ$&nȷOݷڧ 7u^G89y m _,Rg/pjǘҫu0\?J]#\w"b=G%γX7l8a-[QU}r=B$h MUJLƦGS3@*\"B4E /VnͩNw,**Z[V.p9gpXgյ̧kc)ou7Bh 5U@FJ&,~t7)%37 S@sns)YMtn w4'xisWXa>o%kV}G'TU0vg J~lp*D$&vgkTwU%Yi^!b\xF+' ! 3\:G5iDWhGO*iЫwMwD|qvc*5C-aDjp^k V5 (7kKi7ywYoTʨ,B9rriL]60QR *`mVaY.e1R뾩Yn5c/k{xuﵤhCFjپ冤Vh zPab4^eRbgB 4]+_񓪜SC9[QG:Q`Y+Qw̬ v@ R,^,. 짖W _yDu๲-b>.$ )'}^'. {jWR9hb(6IVh ӬxI6Z1U Nm.ޣ4E@f>Ues-)*3 u=UJna 8:~K M-ܰm̧wd+I*imw Ri&Uh>VysnԳ>"2yNv%Pb:T.a5T=\S({*G^EhZ>G5هع өrU 4XC_Ul8 o5 Vو|uDasuDO%-0n5XgUpK+#2UiR6N 3G uBײa5u9gIN+*7O$H0Tn{qla_4O@RÅkXItEGqpyjihOͭ'>IUQu6,vg)Qc~ùh=Ή*}Wq ~ձ|UEYTqW.-y&Sxl_%in&v_y{oTG#%xy,E==ځ}C -oRHxuk L%昦A(qf|N7%Li-+ j#柕O4a_n!'(o9wK{ UOV絽:wbsAbUq5˟$r uL '*75n MB- /u:܈Xj&QNMyNH0TOUJ U0u[$o__ 9hqftY'J8; ?A2F2\dYtWh^ke*ƅp^j +|+Z>DmH B]Ty,#<=s ֛MٔZHsPF\8TiK˹NӅ:h(H\Jc&tJ}jnlo}CI!::<5\wBQK"3Qp51:eZ=Ät*# [)ܺ֙Jߴ?6hӒTkZ*zu|8GSktN|62f'3FOڵҝSH0ZKnj=ڰr֕!U|`1è?-ph >Jr: ~M`ۼwC%(Nn{ h ht]\0tL|~Knhø.q7D G  jANt#EO.`89跜1isCUkATiSkq#O^L@y2E x',(3 JpM9,Q蟲aC1L dWg{x|;vbkd杈uVaT׫knK ˭h,q&VEPf3RygbP2rjS]G>I"AG&$.ϧ$Yk/r{s4ւO c&5 h[(u!7x*5&89?>wu$2CR5F_[>u*=QΥiH=f.4l@-}#54@ ΉO0 l2?ҝ#0iO̩>. L ~X[`L_iAAx[XbuY8GЪT&gp9X٦:&yh 5%pRG%8&jS&LTXvjyn`{<5x4Â\9kچ4Laa^֜X.M4íf%;`G2~s ƛ;aRWm7 y"b0,hSmggԬ\>X:~kVGftRGyoᕼc|װezER4GUFPě.WX he< Z>NO85L5Uꖵx9amٻE$9 PH7~JmLtJӣZUS*FEauV.9+hȧze&73#^yg 4ˮh"7k {af ?ȉ[tZ<-XTʹ q,YXurr=L#iӺj~fL--jkRDwGkRѧUFe+w/E+ O_ XXQ|韆Dh Uw S=2 X[IRL1a.V"lxXZFWQZ] Ht9:uGV5U1oJ0Ktb:2~v:ջ6;Իv4O5 pfts\78S)fD+y놚A' (դ$2YC*9Tu*bXG \/<P hWejgiemmf<5@u 2Uud4i# dm;03 y/SA@L1-Uh0sGDse:CYV͵̭p;Rqꁹ->#Ś)wn(X!^UfL.ȧxx*7Cx,%?*|T Ҥ zͻFJM5?򫦣ˀp>{aЅyzMZbmn4 QʂZV; pKNTr@*bJgFDd7Soxuf>eb 9`\ZM;; 1.NCCs>KXiLW=G1g-q Ku[<|a'U9fF){DU*ݝg+HeJdazDiZu1P /GCD=ե{G%"oCJm*!B."J D>J"ᜅO8ےy͟{@~C R\rS=!0ѧK#yT!(tE"hF$y J.*X\1{ySjATZAy*7,I-p/ ȱkH^U 0<5?6g.7,'{]?!°檃!c/uLko#]"3թSi{8F)u6{QRrjh^e`mQ.k nBZ.Сu wcoVm4+ԫj}793 wz|,;3!'a\4+}X OC:V: v&ʐܚj2$ƫ 75Nmi"K}eLC |fD?LZ DHQ-YLA t2tj81br`yp٢d*9pNLɎmAeUUmFSk9D,Vm+vMN +߽hsC~jMu f^7%xSkO|K`&[%G 25 pH*:xOUP 2ElЎרּ`AzAne%By&O2N~JfsЧ*urJk*}"O>ES9,8;zhUs-$Z*\ ᒢw"3Nmi.D[*jUBրT8wM#Q‹]}HzK]rWf^v4:j[}\5ge7M; ʁN\f2|YaZLĪJ5y$E9 a);҅[kKwFs|tXO>"%od.wXi TV+Y= YI瓳w*.اR=5V u DHIMl&G޽s3~S XpZ,N3.+NCϢ6)TkUCK/y[~ɞhb*Y!֓:}\;OTЈUܟe?Hȷ3AS0 OHd8c^e/+zK]N*0}BDDfh ҷ7u0Ч!5i9gT}hUˋTeg)T?#x,h$xD4MHj]hBT M~ z7Jm':[96K ;o-Ӝa-)BfM'5W(;iWR4*Zs\YեUeGR9*g!y5DqNx}{MZS{IM7G$Ԟ8Vlߛ5V#JSPĿLp22X?mLx7fsM&%vJMߝVq3&"u+i<\$'^cg-@緸<x[:5 i>iЧa̔Ǵ) ei.:+U:cȦ֋DѪh>iL}8N}\ BVΑ$!s44^hwW>:xpY[gPp:*ױ||y[we4d4ٜ±sM9@Jz$cPee>nMSԂn\Lڊ/S57ky-s ADn 57}`.7-J^x)eArW,۫mVHUi,EKDTWf;ܘ@b< @ve`m';Xu:02޷{[PTe@$$4[jqGhy'g@QRx,> O&BgdӦ$U,)؆9 f(*f?־\ڔTMʡZ|0V0]:A5 ǻNjnaSΙi'h26Vo5I3dpH' 쎬*K^ZǫM!6e 2FɏU(Xch'-e`0SшżDesFt \52䫋*} >)o\Wm)0ŷyD41akUK'MVّs'!S\tE[F\&b2Lg iJ{p橐Y颖FSFDt 0N!>yPi) j0P (TELW%  OB{u<0oJ״Nf+#%a⒨Pm4¹M0aC۟А_wUUgaw, 4wE q g$BV;eӪҗi晢J*)t'876x`8uL1˄B$nOC^ Ѱ` ^5.)o/erlRۏtn3oBegTc̷{1ZdWg*WԈ FTo?!Ҭ]0px*,j2SCT+E0%9‡bwaSӼCrsm0sG<UҘB9ܴ6ho!&!UC/e[=*UamVEa`p۷zEIM֞+TtpX8yLaJQr]\OT0 peCDw-k{߂Ԇ* fn0حŶePi{h9L&؀ByVSlpJq98[19*!Uwӵf,R mv3 AY -%i)UTCa4dcc{ydZ8\UnU>O9?v7k!kw]!aiT{ƖP[K|]TYXxzsLT2=.e=Z\;v9 Oc]rW^ ΩR;PLIsX^*-k2Ui1%R@˪uWI]PڦRH'1>OӚCȏ /rQq,cSjwIғbpQ$[O9se; ӣ[ao^hP%Fj'?%/|*FnwWt=>LZ(妨TyVLNl>.ᕏ;CMZTAkcf]QQn傘3 ohdKO|rXJ]Iܴ 8Z+\Vl/a, ³bIWɐ\3GhEmrU|DuԢiRBmUtmrjԫW1H](˻q.s_{ɓ0u4Tj?OfA:a&_&\<=Pi0{5*Lx^4oq: xUuwM@I\Fқ1iz%Ps olUsbӏSM9AT/ʂq%RDStt鳆 ]} }ZdIaM"JaW`gtF3$Ð9x+̆Ɠ@ˉJp,6Qu>]Sh#Lp  UTS#7yP&zǗX9.VsG4LTmHnAE0HP̭knp6p*w901qE5Bvlvj3Q2\z8L!'9+F߳ly'CQwݪ'޺X;iOS\l v-Yn!uXhiϚb|d%bu'2x&ccyJ-aOjwU ;)9BJ*fLseP4fn/U-dG ƈlysR_=*¹5o$8jT#^J{x5CڲJ *MDD:SD+Sp W{U3s'䯜<x!59[7ИCEVRᓪ[ӢX3> 9o)/]/" M`qچqopS\hQwo,Ȫnm~JSdnNtHY57_|Sʬ{rΪH1$+ʛYCFaSi/rMw77NeuFF\uR 1QO-9!9ʧLn'5S: uTE&G&T%ZR9yu'HPiקCZC ȂE;6-_s-ks `Q)6!KZ\yM8-b 4fߺw,Zv؍&Gka WFBteb[Ҍ@sXb7`~(" qqOڌ{@sWw=[k XSsia^O-7:}REĽ%֋bMXGT N\wqf_lh ~zdW 35cNH^- m~^J%Li U*=h*99 dNי m'4 =^ . gU,})H-2=\qvQBiܲ-TNSk槌5jA`v] ƔSl\nƗD Dp˞cU:&Gsfc0ċ[2+[ leUstO0+Mw,M9җOY~Ik,|k UAg*ė.W,M  ]jaҜrȭNU= W$2FP8H,8L;J" M~92~RhoO"2P a0Y!b ơӉt*FNe[48Sʁ#00!„uN!B%JjNS` fm<[L X]u6=murq ) HCŒuV?wݴz*2tM*Tis=ѥ1HSܖDo(yOsH*o1O(CLӜ-v{ˍ̢skU:z+`G$O g/?Z5Maf^0o v̑™d1Ls I|,[%ZrWDJ*خ.>ISME6sT%V͍ UIU5c龠]nssa eisne9w'D 璥y!N;NkF\]uE"lY%1!;@Fn赘9jNV$"5:c)d+FY&gT~#%Vg+[ {<ˉ4JB6ۡe0 #67'i"sa$oz-vy8ndYRyT4 ?ֹ/oSV>U8e &2s޷-p,NAnV ՍCy2skþisx ϼSZ2o S\`<t9"I俁Nvd֟MJFن>*R Sj Zŧz@]Y^wPYZO9ALr~MYsT(Ѷe5. X~*8+-CSih]#H,*=֪n-R4PsGBTE=i'(Md2Sv:mҟ{@DCT`ys*d3*38JwB9'l/v* WpƥS~jwCvVzQEPlrofyFI5<&Qu٫S\Ot#j"'gJZfUzuTkK}+_^ jnq7wS:bGIW&O%yuBC( ؎!U(L vRӞQSgRK%We4ܮlQ'V3r` M,SN5`^ MpR'`*TJ\RXzTMVΪ-<{ȈJim뾉棄{f曊#\kǂJ%BoEwR匩;Uk|r@iV ''Z-'#0eIg;U'dNÇ!hPUFj])Nb&TOlL> V]᧽,8mVĹT8+XִHh:'2m uAµRT*WRz&419tKP8dUVXF7yhGvy/]R(aB eU"ntLl:k}a4Ʃ97~ =IWtF\NM+To$é7@T$ocZ eW]Nn5淘iXBo&HE{JJEك\i,>6uH) ND&} r^S_&*Gk訷wE,gz 7xEu "M*Y OIr*`yU5r^TAQP*+Xp 몴oBuѣOMU570莫z,嘒\5 _CA8g$3PcJ!90V"s`}|2M[f p9YUpYF\Z/ԫ{9J;UYCZ9v7gOk9ͤ*oI̪o:j}1u^L]MډT=}ٜh~r͒ʬUJu@2{MIw sn*,IW0vxO+HtUM:cD2s䍆hr4ө5\"~ix鰦SW!9R)ٷg&)T{LL*$#;lz|Ka{KQ{Y=Rxie}Bc n2X иsrVku1~j)\w! 8rꯦ3sHTa>IvF״r5wODi <&4 S[̑MBtԩb+:QȕBduqU ^o//lt+zL;,ް=NY"%E)FHx&rN 2U M-m2fJLBf LtswŎ ijUo;MÒ0zQĨ;;D^rr_(duty-}Ӓjb~ٽZfa uE2=9F>J/en|?p$Z69;ܿ5%O}Jgx9qpRz]a>jCi>ͪKG;+°&ꆫZQ@dUVdi)Akp{ ENо.l`)W) %hMb~ xvU٧~k E$^NlIth1NkɸTs6RՍD4*nžpN&DHPEc*7xE1D(vFS*Ԩ[żAAJO)>2d?OOvz6~jj2Y rw\RG{!ba-=OagQy"XSs#+v?6rN ouT5c4V7*'s)ﵤԞM9s0uIR$~0LFY}U;iGXU:#2:"DTd*dR{8\Ce \Z b~yަ~mGxћ] ufb}nG%@ BNNl#]5S+D禊Ri><>f\^zrMhh:(VR$ǂ'6jaVUDGUwltU;E7x-6E4Vtk#6SHjR.DgR}:&Ϣ;Ng%15n7\(maiញԞM@t7{ \;C^HB2kS97 fBe+5G2WխRi.{Qh=G0 ,‘vAN$:W35W7U#z쪔Lw__:d*] O%~Sp5^[bhlQs2/)z;5iBq.Ъ}Xݐ7؆7VT, Io8}GnTZ> hXpXv统2TF4hiS{-tX|S4ƆC%jЂ湠>J@@X;6 _4>US6YFY咎0Sja$O##$ /4W4\Nj)r@N e8l+Mkipo~d'5{ajw^9m&M♘3bknYN/x,FWv޺WeaSRc0%7uXLs[L%f|4!n)wFeTQֶe'G u(ӧ<ƪu3LjKIbZp 0oi>ebnT(!4 U*m8 K2Dv%:Xz6.rprn'z.h-JɍXی9> LZ%awj# m26l'DFK٢Uz4m> Ana ھ|+轌&g.i'[ ^Is# LjeW3B&Ys'ՍO N i-2GEA tR⃏vSpd+<G=CSi6*r]6V|%Xs)-M7`l] a&e;CkOC#AYiXk 89љ j NB;=.yTR,7{\rv(U#019?-$NS0=ػ{f::AkI 0|D61.:}3rM|D˺ǒrBU|"}DڜUZ+u3+w=C -Dvnlޙ*e$4ݪ4(lg,NY >8y.-mrjpvbvJC$*gCaC(Or2`Ach&.U{xf6X;a,Bu?X7$O8Uq>ʙ u`Ԯs .7. $stnvpgM<􅀾7{+}]֗d2uh_Vv%E&Lu32lXaMsT7o{IwlߖʂXSgx0Ϻ83PܜUkR~G J\iʣ"|s>AT3=>JȊtۉ [FϚ̔GM}(rA \sC]-eaj8Sk^-QB%5 fsu%]"NjRITxl9,}FcWg׃roŰ_.iuNU{&-N?못OF3F&i4UټMdHtU sȬ%}rjmQ%B*(PBjjZVHżOD:W8s{Wd2EUnL)%6Ub,Y==9'ɐtld\!P֖˓qL!hAdN nmV2= ִ 3 Vnג Dq#T{aꂵ BÚ3eSWxM祖תv 3d-B. Xa;CmXSaUa*yM I=Zݮns|FjDfs@?UfYP^mSLU;mpӲ %5?Ui!a9Z׺ R֑~G)X"ThwsR=Ld7K@]a:g%b(U^915 A'xm$|kZ^i } sN{r懚U reZd4 tZl(hOU0O"4Ҫwµ̔@s|Tҏ{: koV!3r&ZnU}Wd}u.qz#Q !4!s@~~UЧv}Ou#;_"֛ޑ桽Uܙ|kN¯sT #Ԉ]J%=vTe S&9f,Pky1Z r6$?6)%Fi=Rw& L1؆C'4.h0>h_dSB&sxjNܼhahC[5T\Cs|M'-|wfL/7UPjI?W4*HwQĵǝ:UZoHt41 } wB%ak4`v T4f9ʕa9}wBZ2V:$5EbL>tO>˧jkʕAQw?%<_3"LB=#Ȧ,{f]$;kxО\:Cs#=`?]NkHeyhi҃2VB r\i<7FIĺteZhRXU.ͱ)aMa=&ӱ^շ=ӏZJqZWx&TU4DTЪjMKWiWsD(ŚIUAȝ=L..cs/Ɨ݀g'e&:>9oX4.n;pcSt-DHF[7 VW\Z4^X& m h@JWS(_4{6%bnCÚzrXVRa{X*"X=1 d^2(ves̯֗&}j=א⪁.>U80IgHT]}6A٠Z e;ӕZE:O8TϮ;FliCϼZgW mrźOS-ہn碝]TyܧLWqƆ3h>j/ 'bg,=[LǠޛBz)D<5G0}j̀B{H>\JjQUhTTi~ .mQ]u<7;Oo3)w\-FJ g`ZoD)x)9#s.i$w^a9X߆oHj6v\:Ueg7LFp/n\6g}jRCi#ԕ x,3s(ViNf*Ҡ*E혒R%FkLֹn nR):]ҪDCQM-yJ!qCp#CITm[!ScZchvjv75O;WeN|әMIn'{jpdHdQ.YAavlz Wn:'8#>ΛUJ֍tySCfnW6T#)we@(-i@V_ ?6P7 | ķyftx {FJv,sbp? #.5 R/5%4Gf8wBKxMzmNצT.oߪkq M8OZ_)~OK?/~[R⭯_U?]OS<U[E7˹t*r }\= xk+Ѷd VNhZNIxfۂk- sc< jՇKG4h:Tzʺ]tD>aO5lMk/!T3ƎMD0uw5ID*uYXCr(3iSwy9pQ_JNFEnb&2u]>jKFlgihEcYלx.h=Pc]*uNWJH+{L9/9*X~j`溵7̥N:vs)4O3_ُ5]ի'+O%rQLsWeL9'"B| 4 jA @6y*[ʏ n+qWe)c\k9gaSAѸj` <̗@3UO<; N qDCG4uz5/ShQPTSOQL`J>HY:\VEd tVΪ DL(CvMkG=Sapzc C mV6&zKsMt8N})i§!P:sDv^V'kwZgMT}'3HJ7QnP" zJTY2O%Ul @ ,c:mZT fB##`ZuPŴQt0BR:Xw @,fQć8>< f"Y49&fgeU~5^]:e`7':u,S\Y[1ⷕ(5j? |G#.|gzefx8ukB?i|X:#A([:FY;1 j-ϒ,{-O'-P3£e'Q06-ZG%IkTꝘ[[S[w3fٵ)B jhh@#cJM*T䝢MJi~i |3& תcZ4().ˬ*iS>P4ʡ2<¤׹+| .m@AM2ܑ;2Pa -Lw.+0!krK[iڴd}L vТgEKMU vasyƂ:ibiu\C1qUjƊW8{IO ݖQµ=:/@:Eu'f#U DʬᄤrzØ_uW[!zUPQ2m%vχ[cZτB2[ݟig4l[MZ [Fgލ ˸Jϓ^#{?U$1RŗU+L E%4{QŞuV=h{E5 EBSD>aǪ:.ĶTve4vB湁j4RUèR:UxWh>^4k @<9JFD#/0 rThv@)Z<iDɘPB2nav=3z_U|0U.l6Mit}5yoT;2?D;63{;ٍX:Peʥ0Z֋O*0>;]Й__CtE>s`\@N*q2F6hJK ^\ײ59(kNcz*"sr~ Ɩ "Tq[>}"|!n? ^Z]2|jW^+FJ(^ժߺj|@~[Y nqG^_ .+?g:Q؃zwRvD3qP~mLj+UDi4ieg:ފ"ȡ =QԔ@lm0S"v#Ѩ]Tc G*g'?S5s,4 C pOuMaΌ;\c]6MNwBJզXNuЅu,{90@>6㩕O Q[aT ->K?(#jM+z}nޡNm-<|dJ)^2\uL'*:Ҏ)ky(wTtxX_ItOJ8*cʂu+N-{rPA6i $CBn`p2U,F\\^2sAŎu>aqշ8wxTj ԘVsYEvM[t(EQ71Qy-E^S02Oe}ۺ5k=l%3ۢk5脑Fa= qtQ&;HC~%wGl>Hf5*3n~'r#[S#p02ۊl{@'(!f:#gʔwBO0SXV[fRZ%> L;NSfZW~ZJq4pqO5Zl+ Zk:m#qʻJ9BsI1FX snXogU!JvA(ӞIB+w6=T:XG=y\; R(s1f<=2@Ts](/P 6l;P5rR,LYV״ N4[4tN:X29UUN.}E,7>V1f%We,óy^:'CD a9>IτriK HFYl-uԴǩ 6J' Mͣc!=[̑Aˎy,vy#vR$Ss^L(ex{>6TSo)nYڭvu <[ .K~uG[y4%Ti܋2VG S堟 MG{sx;Y+kD OԢ2)ۄxڏQ.UZg,1('8eVX`KNzme[gS3MWyPUKtWgϥJ~ 17T^`d 'xRbI(=:nrpmo/Wdjk 7ef՝S]|DmV4R O4V)T/K9B5hѩikgO5%Nxy]Xcc*K4E܁i"-/$7lȢ@Q(#]|zq,daQ]Zg&ʻƏNXmPzT Q\HBm>(*7_, niGTiyx#De@MdO܁sO"@UO n#YAVoS^oǺy=dmi=q;SLWhewO|dn7mi*$ !5vJ^OiVh> lfuLIkD\xZ#6Hٸiin B^:L8OĆtFѭMq23T+==Jcԩ[ﻗU|p^J޿L/ɡ2{xA{gf@EG0\>9a˪K:Y#FӔs+-kE>\â8rz#D̦Sr\6́Xwq H-czϨTi>Jn\*j%sTܱ}E>J!Jķgc4Rö=IOe\JOY *?YXe?Sm ŸQ#O8o uHBwOG;=p SE6ZV'Z7ڿ̫r[*frD5+:ֹ*6l:x'9O;yu ?VUJUjS1nV5۷wg?lj0NDѬ#pU=Gj٨FBZrMAuC4Ji$D\Ni}z-T65ZV2*2+a麩68QiVgQ>"sRk"AL&*Ew֤s@:V xF$3 lA. hԮѪk /SMJG)O3(z)_$S7JJvO%g\@lڻLN}oq޳z}~~TfSNKS8"&ssP`cIB\G23Nhx!E[ta ,~6ia֕ڮ`jğl=iPlt~OɅ)J gfkS䫙x~}'dZ ݵnPbwڬKNGW0Sƒp,5Kvb^@BgogvӓSmw5jZUxty*bicXV_SCZ^~kxOwz%ժa&qmG谴i vchS mJv> -Leτlے_iĠe:簎FY N~W1q2VWa^#I޷?'o=m]vdB#ll$aooX'=<^ݟ߳ǧ/Oُ,jL=[ڟ)TK/\Q=/M]9 'UN&閫g JۿمʋUTuW0拭nj~A>V>ϟT)%4jUnr@,q2LftB 2d45'SkA5:ըiG)P>^)nwU  >4r $ ٔYk {Y8 sd7.J؟5E ]z#P8z!fT _4l)ԣj+jVJNBJrMRRj:tg/#%%wTP*V$P੘jWsF[v*3Uqg5T2ghpp*t5 WFU].m60]9O%ӻ8&sXvW8eĪ6ʎoC4V AD%T' ȢP7.kPw6Wl ܲV({a䩙` gَ~y>K5_F}@'ŧ}Kyo-?]OG'/Ysf>c|eLϑ> !7~  q脲\isSu> 0_B}E.[9gD.)Á̎$KLiR۞qJd^hV'*o$2%`"S Vj:ݍQCdeqdV;5jX[oSs΍`_Gn7hG캎s 7FĈapwL6AiT3!xI˒kČh OǾ|SqfPs DӁb!kD<q4؉k>W"F7_tQ0Q i꣢ᖪG"@o!o|ܚ#5],"Lpea>zɥj|ef4֎gԍ(F']MOoK]d inmȐ &юMyq@Ore_P, wzY&NtOUjS(CC"ouF\ Ag?(>4V z"SG4LS fs觢>/V%ًXnN+ RkT!W͖Q1]>O F(XoKmi~JFl:l"u m-k:h4Ph`6yf 2uD-LDSIaez.ਚtYhAKg%9ׯD5ѦFڬwB pGX_e//o;4^}܂VKEMRM,~v5=JƉ)}V^t2sӮjeTL.`,5Bg4doa*l}Gg2-:Ӓ&T8ŭ*t)Nt\ch戹nNJ '0z-lوL}.tG⩹|&dBu OA [q=%bg5 2!S{s69Ǫi%FQM}` *a c<pz S l:eRC$jUkEk8^܎[FpCVWihϚi FO{5s_ZZr7K\~m01K/`6EW@ EHwq;zpS2PKt(憋aX'~QQ%S9&Fg%sA4ӈUrnPV'V˧E!s]vL6BqP T6YQmkd=3i{X@Я{=eTeBr0+~Ti> d>m9I^!-?4j1úQ"mKX[mvk6 Dw3g }"~p&h6WqfU!i1: ǩnp[t`ٟrhsn-AZ*:´R.k]uIXnZUk3P{k6C:,V-ӺQH:tҦA7waaXvqqT60 Tk~4#":S,jù~F]7KXnqs`&"KXJ)ucg/P(Cdz`z`/͞MT1~s]/@r *-xcF'w% 5kC1;E@_Z@p!YW.yT:>a,U">%aulp8jqyu$Th~9*ȯLwEڎ=#[B~c jsV25C5$I/FK9xXa_ C搏Y2YHk k񚅏yL!QbX ;)TɹZNPĹjZr̦3ؓwąs:N9@Bn9Ŭs.M=o ]e\h4+=U3P(N e"MFl:,ڀO9 =76QPB!Fzt^=G jiw=!s|=NK IvxRcVKꏪ*Ylkn#6Pe&9uVs{܏Dw ̂{.XOrtw%OxSۙ'w^{NcT67˞9,!zӛKb|SiXB32Ng5V/cɸ]5iZvv/l'Nw M㫑mџuW4Ѹ'H@TWkv7R<KLKxHXw5ָ"i .]ƦsO5Ru_5GT0{1憐-vl(*Ttb)0xpiNPwPThiC|s)=f765x'8O-\ A9ce4xf)aȻX*)9SCEsRI$a'`^ݽj*1GcrUmqZrbiT47gjxl#UVT0C8Ӣ5 Ou{9rٮ4r*6I樄Ջz#IYQR ҡz=C9h门=q9 KaVeMt$ꛃ5#!apo5*ln5nchx˸}+K .szeU?86!cs^C K|psnnm*2eȾ26xFkgT hAiU1vIyק*x%# c(SvB1)j+EFWyW{g/dvBW*Y^iվ[)eT*;aoGs.qxqm-nz.4o:?xZsEUs5nOS^hQ tO*i0N(cIy'c@ آS<W#SPMny#5}ymw~Y*Ns.q19Q b|"dJZ=Hl5(}AN=HGc̹(u9M%*LiRDs cJ@{]@Wg*T)CM3G9&ϦMᎰ993:Pv"Bu0Ak9d`Y iR1ڂ}Ȋ̔D;1⭈s/oUw@ڔ\eBF8UB'ZySk|O Kď }IO]cdm:-T"9&^?Tlq0JnAv)g+m3ncU7|>ypmpSS+JohmkG Y5=Z14x("bUJUh+]T6x-dHkd4%Z.r)Xu2S h)7UzSsog7vzmHTm,> `4zXc5; lxNȠ!"%ǒrUS Xr%,%?[ 2~}-Cռ붅Vs`94N~g۱,6Pj4l.)9aRR(Z@Ca|@U<{"v 182*x8;w~yKOXSd\GQ)6VjԼc\s1RF}sAUw2+X37ѫU5hOd| uR`-3/F7 | Zb*ꅃ,iQBpU W yUl ;lzNUoe%¦q0n2h'\A iq^=BaG v=9k@U:' (b\cR'l+VKU!BQɡVw ~+TӤ7sUDt' Qq4.\1cZp194v"'N֟%OsV6:䱔ǫNg0<,}cy^is`8qb0Ŕ!#%P\ ṖRQf[7㘔ݐdl!T 8u`PB}z/7ʄju9l5ͧV p!qƣ" A&faL$&ytB'eM!"}HQjJ%\٪D"!{dj)5ֺ+vPg-[SuA n6g$pޅvk!ȃ$ϬK6{ksY(QȊm^s;ޘXjK\Rܲ@`1M4)]HAI$=*WYRC+c~}Uz>u_lмz4=c'g_~T._ @!ڷa@"U<^z_~~/@*0G~iF\n_?K_Ex$ ZUY>緈w~X\~z+^6#7~z5z]M0dܭhOAՍ_櫽K/1A .JT^z'Hѷ~VЊGp\Ki>?Uz\"EJIRz1as~'Mz>3юo ryBw6?1 >"[NE_/KYCRJ~?/1;r߸&ehk1;r)*ܗа oWԌ}.\r=JE~RT}ULFW[lsbp&low._EJr+֥~ z?c0{.RV&*[^(Korn>w kftbʑ??g2J5^*TQ%z+ֽ.z GzxQzo_ 4a*fg8éf2#wT|Ns>m!GЊٷϪ*GV R>Wj쎫Uo7/>WtQ]4??rEܹr2C>RpޜD:Bݦfrs2J5ϭJ^%7j.nja$8QF; +fh #>cLEޅ6鸍a ?螧JeIHM+ٔj`b*tB`gHpZ <²MvE87ԇii7gңY8cb2d+Xß iGv} 53m@Cu~/YhXq;???bjU?NvVyG3N& mVsTJ2u>gѝNNs؈<,U1(*yNDU8NI\.j3 OF&my+oqڑݛ@|5;F6mmχգf=JYcxiP.+,E+vlWE:qU3<>*e.Gac/߻ .^ڥC͌?'藔T"yϜN2m֝Oah6W^"9!Ҫ{2y%L"c/@ s JqnqҪ8.Pi)J.eB%qiҖ2=lXoy!Jvmy4\?O?Lyf_&+i9gn!T ,]$ZXtw 4vN_RU<`q63TT*@ͭ2>=?賘YrKhGC yC;D"ݮ3\4Yt!kEt4D*Ǣmlf!H2ҾOmW3Lh7+;z=L:̱حFf}fplhHW(Rp=L`Oa2vوe(  >|eN9)%Snoq}״"=&]0*ovK;Lg̳rwmԽ[]]"hT[Sa|%{bDlıF!)vy/>6t32j#+LmZ=c&F.[9vR&p`U [x8579;s1Q)q803cb.7n|SfmyBHIv?0PusNjq8bQC/2Q<\7=sn[+5ۙrQ:tvE2}c=೩Z_/IkYQ0ޥ⧺tY,c5<J4jzjp0į< 6oLx,E\;\y0#U3Xf2:/?ybs"@W5 -BPȘ$;P)pep+-@E ۱h ]616_,*s0}MojDbKTP/RlN!8rNEXS }}u,u7^w/>#a-x0z DG&_hX`AaP+؋|G!gh;AWAn&sKPҍq*%q:ypzvs@Ydv b\S?8Gt,ra g#TBcؼkOc˯HrIGf#LLJd,N<gTBsWCA0ےqX_?y1|\3PZg?f9\yGtCL6q:',& -ܼ{pmy{\ARk<^Sľ(HK-qRg107R> IЋ^[+\שjHkIot@-⧴7V,*9 R\UyTVuaBbƿ1 dQ`v= @WX3RSٙAkXZ~IZ*4a.iC6T,wlJnGDKu.j+FRlg3r;.mSyx{WgQ*Yt{1op0/b3M>YMj:-ffA3 p#_qa!-kCSLxyByn#Ek~. ⏴ ֈ RnOyxM w͌0ΰ[ܭB%ׂ__B&x..lDJDZh[l +5F:x;K+ʲ\yW_@?ISo[i<ՀܤWvFe? جck-وj([ݿf06]I/]dUT&8/4/_3+2GRj*AM O9bur*),% o}L20~5L}(~xِ!8l܋ßxfʍbt5ůKK=ԼjnmdDϢT3ݧDmLΑlMu2W*0Dqc%a" iEi¸Ut0A/vcEyx@} *ΪQ^ﳬWsbdNC=EFf5xmoȔCWib(4ЧZ[փ0)FA+t>ʽyN1lƯ>0x8gAl+lA2FI=C(3G1S48?쳵 1!g-j7wnT,rlN u㙀#_ beĪ`e-?t;xoq^[7y*srnR13kOeG ەKsDG0TgIm&"*.|x]y{҅즾"&X :F Z;/ZVrusx/%zwV[{5^E0PTo]{]|LLM  חS  6(~g1*ҹpmE _SpZ{և-5 ¿ܯ; d9Έk$i TR&~ȣCL;1u ݹv`! \c~%{u}1^2͐5VƢKuMJ)PցcE bX_%3^<ŠeQniGyJW_ΊbcgCg'Ɇ8\UJpz,C/ ;ڊe*p}eԷ s̭l0*Rw (J2V7dSY,\^D,YcS^^cP@n@ l?(ljivþ[RTcm,x C qz^ h5)okѴL@lk^pi03sfR!W{ruE0޽P7WF*pFS' qa#kɰ }u'T 2rxѾV /5i7Ra"ԦkSn DS @ߺjNf >=̅vfeԍƱ(]g/i\Ӌz@}ӦXiP&N 3Gr7v-h;AA08Het;@TldM7Ѯ8Vhׇ"t-_.#e PglqAvR~IV|_JU)wmF"rU*B(ڷ v `j)?Kf:+R˗P*>ڞX & iӨyzAn?L*vʺq:g!ZbF+Jx9eLьF``R\',xҜ% k^ 4,j8L3r8(b(d̥]UgT/E.AX7X< L¹8z] >&Өyc/u?h5SD#x.+y`tvB4 %{,”fǥC} ܣG ԏo X$wgYeCPa)D!pP=H !P_(w:x״Vf%F_/(J> 0 X0Aw {17drn򍣱8N58or=C\eTs\F*.iZ/""NCƠ6b=Y fFp'_1Fa,~^ѹvL%NZ;Ҹj6^Y]NKQ9jZy .[;i euʸf0S߿IN{KCg\(-~ fA`9ka.`:]bRl~nMw^ n)*,/@rA^rGJ"SwXT&Qi?X9d\zeDzE@濾 ™)uɴ=_i\;]>k#~7,b75tStpyMn%OG3⢪y~hLcah3veÈnV꾦0/y}fwf h{`r{ΜRq&HMɸ?|i4(, saky4 =LX`10̂^|GBM;(3O,Mnd,C|)4VD3l@v!`(')il"++(cXcJۓ,z@ Mw!RَCh9J- ϓlP|[.lxD(XcP!Z A* -;G1*̳Es+̶yS=:"ʻLjoe(#b[ ϼn:Nx(cWeK^)=9v 阱YU{͙;R=it%İw1&˃L+e nkcɺ5W_{]X73E)cNO[?׬~y3]pP9v')@P܍+y:L}v_ R9iCغ1l&MP9 3.ؖO0ipo;u12ͣ-l4W4Dte_aX#>ޱQ!YW{JþiN7eȩ2 \P]XI\ y[Z#s{KmM)%<ܬumf:Fߙ7uh&(RPlr8͜)rۆe&<`Ru6cY@]piX`!RH֎ =P;n=\3" AH\5'M GP*pF"_Dv8ʑ 59w6Cv uc`N,eBݢlS>`-zSG0+US_`INk(O#[X5n58|T[2蘜)> Rl*FI>:]zinwOMu_-R՘8 LZ4S(̞|J^eC8ԶMj80 kb:#䍥t?x Mijz"y4)RKHŦ\T2X4#ڱ݄۳n,'vY"mx5 ;+(}k ˿lJpo#/(lUQp8S5NC/-76j%+Lps0iS i:<@h}UӞbĠ~߃aQ7#*v}}7GGGQ$X֥reۥuqC1ʧk/X7pJuVo3Ji%FפZ:VR 8Vdeu-o=k@-.E~D~9j 2ccT2+fR-*myqnLeTEn9˔,5b] N(Q 2ݞXmxNqf/-WT3,LQa|.:-Ws&1BJKUUQu/ Xqc̰ K(uf UkHL~ "YYƷaSa3jÒn3908#_X4@5α}pt; q *m\AZ8r2ƫEهR> pza=75{Ģ2W*:@Z KoX%k~􉉧P@5RI 6UET_vN{7dfk_!N9%PY7ۤu!PSTBUroA%-H"2XVGIsIQP|п rB5.p}`!riC&n tKzL˘DF55+;O러DYElA -grl= 91Q+.%JSS2ӯՌ/^1!􂥀ٞ+hc^Ng>pdu9:M37+5g,EEkAy*lFQnZ~C}!WpwU7*k f6fQQjȝ扺:ڟȧ l kmAp@fC#ˡLqs/$;uu; ^S7+M:Cдۊ ;&ic.CgMU}'\!{%z5X:55\CQTW8fk>0  w,yB9<v1{ܪb6ǴW\thP c|z |6|qqgM9V:B ?FT9ה(7G N8 iw rx! jϡ(ݙxX2ʶcK5}i=u5Cs+Eqhj׈EU_)!_mK xb珙@r̍l2{9C,T(r\rCb\S'J[';K#؊!*UŠ jcuD5)ia*c̷muoAd`@k Kb1קoN`DR¸ , zb%骻AϤtλ4Q,|acEyuYֹ-|A9/iV^jTF/LOvpOc9C=?빉Pfrzw Ɋ<Z.˗>ފfM;Fh3V% P',-+a] KgDZZVq9D+f=f RK|7 1eQGwt9T'i˓ԏ ^O9Qt0 Jĕkkc:>[~q Dh<=&`{dJΠ BxWPt%T~{i(vnPF 5KC"H2\Wi'ٹ|8P 3 ĸ1$t} P3g.%{n{ -*k$OA<@k^{VF rŴo=wίhT 2v)itsrK)0RQ&̩[tg\k YmZ "gdIPљiӣ=}fgl8l}c.ǘ4*`fj\/ъAg̤pO35B_2G7QsʨhRၥI{푱at\{h![LJhcu>D׵L@3([|Fq<ĺq4#L^jA8}9#ѷA% 1K_V`菊j`JsZ, n5|DX t.}%ٜK^ p7+2TPjffn&b..`HԏJ6kI*hVSe+j>ePɖW (prCo8W"8"eXΐYMaˮE5\0QX#q1A/!~ϛ"BfAyc]!N ^ٍve(YA3CvьMҔ\4 i8HNPeLk^1,a. =!'V2r^XK֫`!*AǼ!u# -:@׹ Z_׏JE%1S-naNefdK;ezd 4')6;Wr˅)Sw٨ w {JuxB/fL=Jd2ڰဿq*1ײj0lX:jMޥ59=a_~%x/`=vf]VWY`VHhkTy?ݽo +,D6Kޘ:Bڕ ‚S$93k7WU|fiD5|2ߔGRӻvw !2'<WEo{lK!hvz[e1}fo~¥3 _1S_蓏*mR:Vp8qvo@ 8CVK@;$ eBs̛\AC #K䎉fU>&p*X/tpD\"X Jd,2e h-W0ֹW0-!;%.D!uԱo Geѭӓ MRPe/*%̴u89Umt'U*avC]ʼn6}JB GKU+xtu_tE,Wԕ_N1Tq1T}?NOw0  WlPKtK!*]He|ͽGl)cMÓ")KŐzEas>*O:h4Bg+/ DhlٰykY̺f.HJAH9rDWq2tb6Se۪K*,gC@%U0tWȻAD|Gg˒0qbY VZ0:V]Z")}Y4ltNyqQM13D 9ZΦbG&nҠÉg\$p3&%UI}J8ޓ( N}ҙfIc26w@z+S2sc,?Xg^c$FIqUl {_&Tͷ̺z۪_އ+D1b^gCpA\m>]+1`R_T ;sa IZ|[9s1"n 5CJ(auqݭP:O4.s+=rgЎ2v< HPn/O8sbA|0<%8^FtA9԰Zw4*s,r8@ hpgBU+o7NEq @w ѾoNd\W2oa0sI"'Ml)S30f5o,nQLBk84:i)LxodPkg\ L/wK./t k}BV%7kC7eÇ$h! xGZ6 &z?+LcgrԩUӴLgC1sӦmdh:N'W~-LLsT|z%-X9h[|%%Ur)Q:l+͗|CQC qRx; tJ 4_Y͘|fep;@ KcL '|z852w& 0&QڽY(EI#7ˈ[K Կ|c?R4ωe3)G Y2q) ?XVx|L`QMavMҀ YQX%mpg3M`x J+oˊ-0_k?_n:1-# n*vjs/jxO[U :_R{C|S5IpV E[ tDxALZ22FAܹ§KPv,B FNVp?E}f$;L; K_\w۲sS>n:^W3DsMʲ/OB$Zt=|L"~Yrkl@BO p1R¾H0M ڨA+mħ荆qJPz8PJ@59" C QIT6yn.v#\φmmQj ^s/Ky#*"!6C |J&֘2%ӈeK%0y[x5ᙅK"!^b2Z2i˙˟ e)Eݯeqȥ5j,3]lVN2ƫ5bo11u)~gz~"r_I{( =sɃT{˼u~)9g%.XE)Lf |XI~R3/WI!=#)):J^.Zqܑ[@aGfiޏUYvNndE䧳LTTJ^qPY%'A8b㼩WM?1%V^.Q%{mpSC;#0$ƈWmTˑ5.ԡ7QU~R,\6R!:]A V @x=}fơLy#=pSW A&h>LQ,VY"u9[v)̣j2xf'a'Zy23#v} ݡs"l=m9(&%q*VT N%x[~&%~Sx%x X[^#ӹz̫S4dv:CGPy마NYНۀ.VVD`r }%z~ ahr1b ~GRSvJݵs2>t2q՗z9ˎ𣈬ll_(JzrӨ>!R2z03gY>Ъ]61.5Xeݩ(/ӈZΦK7q,Ctu3 hQn}2)eJTfp)Й+x#3_fMƷeU{%T;·B!$3bkhr{w+'94d]NAx=j S+* m9-`u8Ҿ%Er|D5 O̓){]0T8@<[F?5@r⯷]"-X!O \`b5Y6lZc`&rbanK?@FrE a[D6_M4 JLq3+yQy=">龡+'%G70j*eHs=X2Y]~ muYH}‹28^Sb8QT՟hL#x9Zxk~!¨|\6$p }%7tK' ̎YU3rzO6Jۙ3P ү@f YY޸] a2uC,hs ;,wcmcP}cNC A0[qK?(bYiy 8G8{xѴ+ߙ*@k6^N\cqEB0 ![4švKWvPR\b-WB}Eܶu<ǰO*O7ַ+fvؖ0 FkSb^ }n͋ףFN5dPNY(/-VT#oըfImn6Ʀd@B_ISў+:Ni]Z2^.`Kex?)J2uM%b yFXf%D g)k1!jwGO*usn7S2wI@ʢ1fs 2RJ6R 7)?Mbfzn'L"&E 1'z!R^FK!}Iӊ ]bZ@Jt$6^.v3+ PIJ)2FsYi+OUVMyDK_dǰˡq9Кa va-de`ģ|Z:=yo`Xw1緘δJqYr^4|t乱G,X)X,S \PGb_I`cv&H9%V `&6ʼ so꒩ 1CAo,))>,Ez-OA g0] aK֞GШ1yd[T6&؏q ,t`G_&s19Pg!'7 9 fwg3I.eDc>F)ΉLWY Y4xL &,m2weN!ĽgTh仪LqZMd&Xad\1243+q 0H)}QJE* Fk"G>m>ӓa!"{ѝ}i  pLXQ\< /o߿݈L 1 !y 6`dӻ2nX)^,ZU2F'2q}rTAaVUNжYje\=]fFYږ\/3$}.Yr.kCNh ;Z~k%-.;!Ny"}W&#y.s(=/wؘ>VO#jiЇ 6kTE ETu4,}AGXo/uܕ9+r8+ a!eM1$p0>"Pe F\g_5QQN;C [m3 ee_pg‡SZ|[?dfVl8-mJ{2G\־g'mSM;1M%ҹz' Omkn`/ӆ?D:ԡCyͺd -f/Qx_aZuJi.WlDR=/*EcnTL}!=WXoC|-v3u9k5"y&|X,\;8`<,GCkDܨ)v@XfEL-"\*s([߫}gC2E%:*3iPX9ݶf27ԗ6@4*c!ŘOɣa _s+8秆i<6|\(y_)a{,'78;[ O{\4.(BQ<!/oio.ml)2b!q d˿MbfT0j[he]hyD`/3w~I\^(&,ےÇ'C QLЩӿĻe<& `1/ PwQp=YY|ŝa1nZa~sh혠IkԻW YYu\J.uqa).A+sS)Z"7u.!ʤ y{Lyt˭}Z>k)2:21yu7K;83Ծrena4zz1s/G$̻Q#AX%te}"Ef51s3[T/j n6n*g5*+iNP.Q" ʳGf;Fgf6Z7*ӯM!y6d37K0JƠVvgkk kgK5\R]w2_s,}Ha5V(ԀYyS%_ MIB=XP,p'#l%QuSN}FTZ`A\p}s*TɆdٿYf<ޮekΆ$AϼQa)_R`~ܰ5gl0 0=_V(^@|Po3,s}HfWf}|Yf!~ l#"eHg蜲AkѦ98B2D+R et3p2IbSal˼04#7qljۼ@}%,m^rÔ5 ^&pkњFJ0@ -_/_#Gt=ߥ&*z&~Wa\תvj[3|g'̹,a73ƜC:u3b[q&P;3n٤~f4l#h0;eN$.\׭Ds_nI[L($S#jG1:e[[a :Mߍ9sKG1fJ"T/H?TJeB:lqIbgpWl>pd9VѿD 0FZ\8L_iOyuTՇٍ̽`c6#ӬxhT~s-Yؕq3n2J`M3*?b }#GeVyFof<.0˩YcÈ0[N"Id9뼭urK.˲[)A=Rs9Mq2#|ͿO7~ʂh1_mk#~o05 D6Q+_8h0TA8~!In߹+sWJt:mg}љ=xVfe{9N_Z0a!b2uO/CzMl+c*Xbά>@ĥ ÝJ+ҏ~p[s 5pY͉OɹQƊ 1fj|Ҍ bz<.;:Cp8<ǡQCmjqL ܱKG J/B+W2x3e uw5'ZY@;ObGAylz˸oG,_+MarV|E f\}e}B,tg>'򏥱{YC@;OCs&q(Yٹlʬ@]IONv2^j , ^tF%/JO-6F]JD!n5۔5̱ooS,_ghe;ןJN zX%t/֏T$+g/zCP5V xP/5wpVj㯩o512]-#\6u0BqWXegEom|EuS"J-Z&k/gLp2ZMYNs,F: r/w}6l[xunU6D62#]R-n+"bS۷SϠg៊4CJl_ Ŷ*=SV#|33"9pva7U&,-JjncG\5GflXruE 0[ \<^~YSe-qybX5/\?tI*o\X*efؿB[]#dOywNgR#Srňs%0?(, M3W_i|c]H;} PsSj$|ɣm+ y>ψSs(:z;j=G5yFTZ^ 0WxYL@PTIR3#oWaGy'b.\\cޅMS\0S1pŸ~?lLfX/?eMw ߂ozhu#g`z.,0ј NB 0f<0S~+@nj癖J'i+9en1:fjcё0Sƥ-L{Dys. vzJW̪Z2M2hG&68F,hseCGej]89V]X[2E~_> 2؜dr]B ۼx)܃Ŷ:ܲ ecĢi{\G<aIȕ/+q.q*N!O"V$1}Y7>VܚeGcuocBV0jwcmh,By16Uvv< 5BXLy)ĽVx' Fr0XwaN.20vgcQc4H>&ǙytKH/_2,]#-ݼ̉g)Ei71w4Gn)_ $J޻MGNf-SamڋE3NqU>鈀PƥF-i=EvVF9-U<7*~Ia-ku21O ڐs#Z5qc1B+9n1@=tӆqʩAyw,ZÍ`+os)"/%@ Jή%^L6/yA,iT&rSrwܥGgICבLOgfg&0E d4;Sg2@5fSAD:Wyn zX#y~U7f̸X1G\U{k7=$vCATDw7q1ü;1 T'RX0;S>^.' %pZ>aH:i*q?}=Q J.:J(OCܔf#I 0TKHY۩-e; ިL՗A7.We20tv:ٝ~g0*ߖZ1!LqiC.gb+70p`UjGh9G[ q:yr,d|Զ 㙞 ?=sq&Y=>O-n0JaADj~uMIk.vDsS&Еq閇0Ic^f)q^f9B\fu q 1+܉TvJ{&r`擴^U~s0Bf nTEEwԵ2;/~p:]~Rƻ"#:OKq^%s Tc{ʰ~띟SЇiv G9obvche\3;@-n=#_g̹Ri)}=ƍP_!uNn{[KW|JHXv1)fC]MGw ޠ]ǫ|1С\,xX]cu /9Q; v2qb^%Sat);3Me|Cr9*a`3^nwz.g̥qԮӡLG? LRcge8άܢVxR/y%<}Q==Z6c楛8L<@ k=c9 %)%Ǧ'3~ g>˧4coO9"s7ـvXwgt#ɡFJҳF0І2C9d¬wjAϏI2B.(+)Ybbnc+3G0X;ͣN"`]7ܞݝLЅ(>DžʶQ{NjS]S]B:4x%,U0:Ϣ>=KVF}陔X+ai3a7yvZ4 )ڃ[NDwO^~#ѣP2:Kc-k.Ȋ^k%2\˄szjLL1&qqʻ3dt;MADP+c{jh ^&Z^ +%{âh-bծe~#5[PFcB2-0%n2{LѼb,~aSqȫU6ī6ʋQϻO>'N% '1y}<¼L!bopsb\?hz4WzQb{ b'<]#kUQz9+-+Q! :1MOE\el_&wYMGImOV?812zƹ'ȷgg3LՓ` 5R"7틤.`NS%ʆ=9 wrzns9ۜ_[/iVcF-oXm0MR <>Dqǎ=Ftxϙ]5s^~gs4+7RmPV~jq (P+<1#0Q vD܎J`ZV{5I5h/9$sQ6(;kSdeivJQbssmi~c8Ks~==" L32cxr-LLgN`2Ѭ0)JDt}*d.Rs0q]%T-hJ tjLtOi nvo:6A/Z8Snڥ=xiޱ7,F 8gZICلmKY܍PܳWȈM!ꌚ/1q^;9h= SQ̒R,NW~T6޾ed1~]x: +]438=Ǡw cQTucqb2[zIk˰B.D37(wvy*3g/K9xeJ; zY{J[*.)^%~Ck8ZW%刱m3!0CX/LOĻ,>J}(J%Td~H}ѱCf/a'S vm GInw bs-ǟS!d۝RG>5Īnc!vaX xYUJu\o-;17K{x/ea}NJLf lN*4#| ]f_uwswĿ 3Vlpg΃!B4%,Of}7 Ny%ܓwR/ѯ^/5 jsң屪˞ۨ$+2f]RN/9~+PN*@sLĠ~Bʀʥ ݾƥYUoZ5,6TgUBW jU[۟H*Ú0 &.1p#ڠWAiB]~0}+db ]vEgh):͈I(`|?tcQXDLwgNɨzae>S718w h}Y3T W:?Ƭ{況}0lpao$t6C6}fW_9DIg^LgP S!h?skZ `{|5P{ m!g:"MLC= Y}q+SF22R(Ļōyo"&Ne|+-7a5 48ӿ_ގe GH˸+q`'Bgz6{~=XY 'tD=1OdN7AeTR'3^YdNDy&} z-S Д3{eG {"[.o;QxkT#fMf+g0|*KXās^Cܖ3~bm { ]=u8z)ܠh+1]]ݏGc(ؚ51@iLx0f\RseHɁ͞bX㈻"Z;$X(:89O;b/>}'髠> $-%TuY#MXbep pFpƝb")<^.eq ON\)}!3p {:VX Por=4Q؎=As X(^3<̪L,}ĵ% `勸<@z^2Ma(-lG׫X'BVu/XqT[IQ0&UNV#/f$kxzzkIe724yzo2Wa4@ vt c$hY9ε7%w% Aٞ`H8'()%u3.~4py;.Sxk՗fSobѤ̡ 萯 (gs˙YzC lp@daLYnk{f1vnK\YL:K) *K&,ρ~gmR/KdQ=WчCT\Ks238vp#Ib-c>P@a&h%Fos~"s"Am1L#,D𘾒`do&fqQA4I{ē$*@Uڍ8qK[-j z mtq+0flHg9pL )݄v`c>#<х}@p%ncџi"T1+u.+d^*P1n}y#SL9G_eu=݋1}aD>X6:[;YzOОIwl;AHxرQ-r ӇYi3Lt^20E3znsL0i[rvwNc}7\Tj|ٽ ǥ?2S!2ƙ]#fK^BO1,KJ}-W傰xJ1 秴/i 0Y-}3-(h-N_.W!ZU0UҎ(s,50u3(ryl k? ; {,AؤyW_>wij .k hNҜe8/ܞDvҷ/ C6 e1h/T2n!0_ޑj"*ܗ*-Tfx+`-7D.w*_Ϫߤ12ޥ9ͶOy 89yv &&q4b"wR%Lm_7U(2  2F̺AvT8ZT`)92ֶ̠w 7r].XPm79A3"~浘 }(<#['M X-̙U3Q^дP Sh9>m|])5JhTuIPY-& s49ΦLŲ yi/c%C}fZzz2_K=cu7Eyֽ1Ms;&,[UQl-o%T؆ ;J`'0pԾ:Jke{TJ;s`5(<] J ߈^wV%<{\ʧG \2|Jo%f(c~&r,W5Oiǘ`M Ûo%h !pA(`1 (CEch,_i5Lc8O*Q`M B 2BW(Uz$0&w˳` 8 k3EH\u1̫W FڎT蟑ƫ76Bf~4kq5ƿmX4jR`)rU&Kd5_hMlalLD&~pr$zj8g%z Me\eFFiӏFopz03]3ǥF %PJi/^s|"4Q.bb.1V1j1rCzЍ5g)}a'I1ݧ[L0 `T,};jf#; *uC*5`ORܑuҥ, 5X(s(1}Kg@QPSL/\Muxj%fbtnKჸktXQaW `)!_ 'e@%#6pfd,'w-"* uIpaMv*rf.9"eB5ǰu! _J+9^&FS̽4>/?J>Y|jjcY(pMosuj˴"<: }BzMO1ǯ2#؏} <z&Sy(VJ踄N%WWĪg!JMs9y#pplЕ¿4dǙm۴\Kc)xU@(F>C\xZjc2AcW-t3aќG.9EW 5 3bi2rܻTeeЗJXBU60"Kݱ`?/7>҈"1sZu{nb wipt{ʑ1Nc*Ѡ/rfE=b^950 ]Y* pq@}e${"QI4cw#~ص~7rfQeoDNefjԫ~!cN.fp_F%W9fs*gʢ@:Mn Ö9>!Zi_AwsQJ3̊Cz0Lquwc$ aԮ '%̹ ֮Q` XLjJ?;1)rzX_2^&&aRu#hwacΌD,%Ĭ-aB;-L Ś#E"d^gmeu"Ըe[M'0uVBb& (Oe|&ԮRW-~7%M,;8`:pJgH:8\ L5u Hu5ƒGJ+vk{RbQK{eCw@^(Ꙧ9D}e&ۇg9ɂ:!G0)f}.{C tq.4@0g zF0f;.C`Qn7:FRʲl ` ΄]Mb--2Hx"NyaUѬq3pwCi~!fsG63E{ť="[~AzNO5D 8*ݟ cKs=<Hi L_ڗ >`Z\ 90Q.C<AN8 4@rcw_lu,>{?M"򹒍x ͬJ2a3̵,Û,S"YmJQ+3SҽN`9ԋ1hz*i2fxf(&ebpT?V X>f/<]j1^#JFGBmn1`.U #k *?Pmx<gH7C ʷj26_#3D_KF8f#cҨ'hdI^TJb1 v&&Z͕ ip5;tPTXqslFi#9jg̨w&& d{N!sewk~_$ Ji#YrPUb;f"/Kc9i z5Z=<55ʢl @|,3*>铄,9L$! ϡkѿ]>5˛Hϣ~YjQ1T?uۊdڹ2^͗bc"S''dNMxA͹ _hP|qEcPlT jϰe!.-;yҭi ]r\Acۜ 5g&Suh>uc3}jvBb`.zi G702gP̪bY/=QLh0 d:KkY|3cI!\j+2,GXvc$!8^J:A^3:B5DrK<2=BPXJC8RрIoG'P eep]y _#9=C߬2F 6i J.g/Emr>:=(ff,tZ,C3ZoE)I@~4@fHĢOX8|DBɾrDe_X9 7! CC}>"TR@ Yߢ\KĪ7d73}bw>YFRS*(=sa}a8lje}XR`7M9/Ҩ_yd..k d֘ W^0,%J :_XY`C/A+Sp34#Bimeqś*醥0yk:53b* ǘ=Jv2GieR$\QS}c(ێ,`)ŸH<@nJV(.sA4u7٣B\oLs*THzWTR\3} Lښh|]hk,4*k>hNg EKzi~Ie@W@/Ó@`gcѴJL ~\lZmm[򩢧91;s;u(-re^]18"WA,oi%·lF+zv\T,J0I>JNJc9%WZ=22*ehZE=AUxQɿi}Y\E!$վT'DycmpVly3( FKt40bS<:* 535 ]~[:8=>2Lec^ԩY|76^)1u/ "WT*.UI% o3 rɛ9f~Rnl6̪-;N{6&-Q>%t59 =SD} =35aAy5*Bh+mX7q/.:S8 n[9oPw+טp)`]_3c7)'9әUܰWŌh!f&G"^L2ZhДMZD:y!:?4Z[{gK~9 v>O%7|K_XGYYLCO}X=e*!1AQaq 0@P?/TR ҿ}B.\ ./B.\r.\HAGqcYKH:8Z- ^ r˗/+.\peƢtr/~\aU@˗t(0Eȸ.C \(HL :?rѹr˗`˗\ yʉ 8?ĹqK?}<=1[3=P@:J333a!/_\r_K.__a6 uG=02/aHtFTRt*S:$r˗*ErTJ+ tW򨒥tN+RJRQb躃^eAX._*T}oYR W&[`UiQCfU|dNL#Ѓܹ}.\}_}/*J\qbqܸ *U[]ZS]@5T*TAper˃.?Q%tu ~@6&B1s_n\Yrˋ/(zBTI_en-q!c ҄_*T\/*TR}n\}n\Yrآ+miHrM%JTQ%u*.qt#lhtCۡab=0ƒK#$u\2չrοJ+/qa O)D8f՟~~%uRu.\} _CsGAp /u]rUꌾ K.\Zҥtj$a0^J`Dfaf#% ;ch[$]#|oM*!P%J/lJJ+e1_ٔʘrԯ}.\r\}*T+ + l|B涞 2#ԓ.5io_edͶYr˗JRq ˗._\QǢ e"G>BQ(*$p`˗.}C*;.\r\}jWa:nΠbi{x* +u/K -(,wF* ވLڮMsX[n\r.\rR'f/6XvkLJ< n㺪eOF A* M\a2X\uV+d4U!"`w2yFXZLPr .CGt%n;]*B `[ekIܴ(䟿撿rӹ0z;T0Q8HTAi,splXUo+L`Bj|ےpӎ^vAUTUr@ ݩxF- ҉6X`JVt*422tr˗_r J*_NB|gh6 fc ANs%$5& 2]FE\`awt$K.`=//]W{rXIPHͰ]/l h4גBlHƱ#߿ig~0)#Q^B}~/1~isX(ϘK? O)׼ǩœ| F":_*W0e9꧜ف!NsSUKB:0 !JoRv00B#< dSxKY/d`y Ц^‹c^/ e88)Ef!PӃ{0I9!npHW .,y贝0rǟ5r` P{ioPw8B4)ōj*k+LvS2riʆT =o3#Vf ;+ODA, B!n=Ņxq9MBϓ=cf%n7-o%[*ϙV Ru}@+E?\rѹUnTJDK1V9F$yQ! ՕbdaR8+V-)9KHHW>yuhw$%5˗._r.\W*\+}vEzd(l0(LZ>_T0A r|m,%Zd:Jk#s{|22%baizIf; R[*r9>0m5V򚔆C~f YuӮ 7 BhrԿ.\rɨof);`S# " X' 1.Xq ]S!qr#?SdHrX^ ̏:5QtuS&Gi/v/99IsXr?/B082Y_Әjg?Ws[O*j]460T/:=e4XX-yJIv쵨<̮r I<1K˿}wLx)P!osAոm;:QPJ)^׵6OD*& $NJ_E4^ ljRҹr$RPG"DzcUn W]JRU[J*7 q!k~JU7.ԫFv)ح@%괡_.;3yY7CՓ.J pS~KCβJݝ[ Bo_*TIRWST\z,<Ϳ;#i}=o+o"L*Y\ޞC-eeuIyW*j& cvsA-koG ZP&>.(14ODVwwwzV>+ @ ү?#P ZDHqV2ŔN!S-_C8xn$_w.\_wy`堨5SP=[]Uhߨ+%Iʺ!^d"-r׹R=Ve}t#TWM} Ǚj'kLPY1P1 #c{j0{B|l2s0e?Tf4ypwFoʵ 65D"_ '%. C@mcǍy~&mR{ 7J/H N_rr%J#/^zmm^4Lny%Q3''=8MAoklJFNפx-e˭+R[Ÿ.Uq 7.\"UmIP`̺֋UAZ&K8! |sr'ĻN**WG~0UxCoAMrR)Q 1ejleϭTZ\ L RԡV( %r7(򐥗FJk&ْ+l;nT "^6Al? QEB7i3NU z Jkk0ч㔙f}X=+E| =Cf⮾kC?5JӰnJM$q 77)RV9Db;g{3jø ^ M!{J&ST8b0|}n\KrkM ᙪg`N%fi)nX\Bh*~An?79^,雔? 2˵`f+ 5Pmu;[26aB[*z2,!MI2p9WBmc,tzWr˗/L[)+ZvsCڊٓ:EXJcjnݔCrw _L܌ؽH)ݧ=@;pU/%QvS98㜭q?wrSO8L]aY#;wѥKiK)c7)c@L"/[1JXP`h[y!EboeZqO{C#\_._/(4rRJ3ʸ"9b5De]l"I))?v2ª#bu+'E`⇵k{ݒ)ǿ`BW9\%V, ݕajk*O*WQ̹D׶:G{D|Lcx| |Z u;yϠQ)2❘V0Z%>' ¥={9 J^rl!,!߸2, JN-`!b`D[QYvcf`2`)q77gSjB6>!ݼk˗/r%]*k#rf7ӈ4$57,`B4#*e)G?,1̺"ިʇSk-tTݨX hEs%%==u<8c;y$Iڢ_O37`|& *u}HTj;?bielU<dHcC,sD$&651ah-`ERJjXh` 2_D}Zu> Ha# ʸƔ6?}ʘG$KKK< r,1 r^2 1â!:^qm̗zi~!ME{=OVHv2Y._}oQ2T66R^}H?~lEk9S }eƕ=O If¢0bXb7sv<.\zy"C5olLD\!6 Kr}o\r+øj&ʣbxZr66.0h#M`킣UNQ,9 7ZEZhri-,QU-_!b_r~LEN% Y8Vˢ\˗/w-eD dv>'iዀ6"C=/SP3Co?ք׾n6'{A*ntf.ܼfg[h4ݧ?n豎!}X4Z!)J7fdg3pc+}ށTN8M{d0n䲂csΧm>"[Sߊ.ϧw r˗._J7/tPiI_ ɦxc d5c0O5Jk$BVe!M[FwׄX1 bCzeӫ@څa pd瑗y.pT>Q9H˓u}ru/jW}.\˗/_[k r ÿc3d0EoUKh0֯f*|b:neоY ʚQMN#ZbJ||b#1!b#IYb8a&£0Uo!J^7zG+"+B1vP/Sʌ_JVRY~S+vy!TiBɸ|[2%Ɏ^ kJ;[C;pTX:ZWbam4ps}53c2g[xh0(bP+g>f~#j3m Y2BT1Wous<L4~Xu *~be˗/\"i&)㝻9_k'e3l-a8/ A._^,&wRHϘ+ z3b@LTz&^G{jig鸎ځM/o+3 ԳRrd4BM :nI++Њ+~(D,)\Gn<:e1w8~f7\2}La_bm5 U8#22OUM=хJ*A.U{\+-ێ5L?.L9mJ0TJw?WՍ]^UM^Xy{6(w," Ev ;QB|`X7 ֘|{JzW|2W.\r ev~ }?|:Vb<8}~*)q Rӽivj $2pTh @}e0w~=Ȥso!SyvCq~? ," v{':#&jr Q}3c6 6'j-MرSJR&tt<^RT>gץ -GDqKƭЪqUqy !pʏ"ݱk{Q5,?f~茗U]߃xbݯ!T U?uL7LI!n$ϯw/u@sɳFpb:(ٜ&v<-!Ji5]ahj|NpqG7īf-gzWXp.FX}TD嵍/\< lwA-R]ц7NX- i>%tB!rls%;.rRJ޵*_|U$WoJ])yM3cOi8BG &)t"J6K* ^pk$%+Px}Pp+ T&IQpς ئ$c+i v0Ơ.܌bW!Zq4y!YrC"b6VHJsv\?BG3v<6b ؀g!|0GXɹ&\  C?8drSl͓fGo$e)cZ5'ҩO M[RRw3ȳ+x7e8EsaqUeFEApJE$Ko }o$z*hsk|gs(J.f!E ὏ `,yC}J"ӤKxNA.=]мɦTӲv34=(+ T1k)L`XR* (+[_c3%UJ][%s+?ځ t(4MɬnMe=̻@a@Ƽt T's>F½ɞ?L.U}FE[%y8T NrDB QH @m$ +xȕZ3@f"3 &11T31&tX#ζ4d 5/C"i UKɖ/0P_{k _o,8y^1nx˲1f,u+VDt5߀)C@<:g`pBVicАѷ]ku._lwe[""mƛȝcpg[}(S`ԯn&N3ɃFgusf#0eqY 0 NnuƬ^Y9 P( lL@N Өy8M<8pJMn 036S4\9u-g CWkU˗._KЮ͙0mCE %ak+>M]1~bs,vCΎ dx=8LZ00ො^o |=تUDϴ^)7V\^Sұm (> bjŽ3 1k'#Y2'FNQP9P'?&zԩ_.=YkіU#s_H&L(szf3ty5`'Qs4$4ld|cU+w F1Qq3ev0KȌn y ZjF>X{ X5EuƠ/wHnͷK7%$U33U|f6cPaM{ƹn)7Vþ+/m`3N tݚs~ N`?*`rU'(Y.Ԥ1#،aYGm) X%,j*v~ێNQ{[W(!| Ǭ Co5W1Q3HsX<]AgT6?K*OOWm!23ow=NB/CR[%L_ aB˖K",Dl4oX}Ec{+NC_ <}#цH22ҊPB EW )X 1b X- XD p3v"adv%j ¹ca-Kޣl;Wg/ F/Y&Wj+8lßlq2N*YN0_7‚lՙ> ͋!&צ,[L R>Pq%I/P'ǤXc0I?셞*/aXA PŶ im>J4PdZŔpOP[,߄Y@+UeeIYbSukQ3`e#Cp4ªddcMU2VKa.Wc Ԧg]7Byxo>=h~6~|j#W%.15Uo_㾗/꿃SWt=_/10)tx ˥e?T ^~FE b ž'.lT<69հVDhoL4nk_-Id`66s^t+ )Z4i 5`[dޠ~Ț[jA1uNTSBhƫs1/&cSMiLpKxqV>+aRp!/?bA6ʬh [1gNDZg?_V5N4jpq;|E=WR F_'/g_1 Vo\Ꮏ&W7J '-UhTAC/"FemyBdMe®3p/Zb?Qn6a@$2Nl8#@9le#.!9pzPXIS +q*z4kjs?8.Rv0.Pa]438gI@8 mfh<4T$݈^/A(/mmyTXmeI{KfnԗUf%aܐ[-N*YK c'x녮gljbqw`wr *C[cpɗ7lӫy X0̉oR^U]2 k8[aOTk./ByBllNDǢ zr힇_ORkǘY,J;MQ*˗6S 4nɥbR0K];*y<b,WQ36 ]=t|v `ÃMxC Ac@J3{UԢStcU 9=gT9S 2I?C2]ciiBhFfnb[bml65rexLULY>8(j.l\1UZDsue ,MkEBƞU_%kbvqQ&j^,y82ZFh"-d N`0;lmr wREE0k`, b8:Z%ĻPklN;c+8e_[wc8ߗe;AsGvW඲_dG¿~12[ǨZudҥ}]+p؏@ 0j_cVgٙc:W}XF6W JSpߎ*[Tp*RKr܊%xnʐ,N3_b| D4 Xp C" \iż FypMd&Yj` q4t%*ʇp_`j9Xv-FQlee~ tlbCXZL)DҳErj-<8\N&9cx`51F\YcWGtn_5ÕL+JB;aB hdI|vJHgjbQDG9ya`pfzFԿt 5Zu,4Ŭ5z׹Ah!Bj)V4h$vn+%L2grI(Ҷcɗ& 9sPagI{@T)(xuZj'8 uݩ{@XBȮh9HX ^E k0,- `J?-R#1FU<{U'h4@ x@̢ͫ>(s {Q= Ѻ qIW`RgRPR эoe4GMQ«k:iݟ0A@!\mB/ٍEaEFy&]}7 fMxaBw/9_-ƗOy mf*gB'Nj#/rղ&e0`*#bz^K Ib}(ow rH y\RІfҲ0m KTFRx‡vfPw}60he Wn IJaE1Klp*6?K@ݷ4'Bt )DNOnvBrPxizI WEoq3_;edx旒3Yj^NVvޛ:Ra34鴅Ijͮ$M[WX{"7堂W;Ɓ`8X@+eBPbOk֪hKuhYWʦX[0X+u)\ؼ*˭AbRႋ78#~ H19r\jk_eheB[4LD9F(KYnuĽC燹Eu`m?ilpt_vT`L_ ewXAXq$ե>X*v=H ,HU5pXRW\]2SD#BXt)صr*3Gyc_/e]z^a_)A>)1MATi&*-ʋdٞ[< ׅѦ0 3^EIP21|\ Mבw2xܸm j~EcwKu8D \&<%.-2z4(F^ ^"ʽT@Rv!!m9~g;n-YQq+ U:ז&ZY#T;1KE3ZOoGیO,C~~;_^o4D'LJ%ƈ@C1EH_^C߃hN܁i}.b_P5DEKϙA8DYMiZ̪ruX@CIZzKds X.Ȳ1峼m1L-n YE(k+P\Ns` g5* whYfa}Rռ9,  o^m|,CTc4B*۫?@ qC^~+pbA1X[ "98z6w u ט[39:{wB<,_>ŦNx8}3F{oL}:φʳ)| .HA/*%)[Q^gWjZ(Ⳙd6^9dEٶx ?8Pq~nYH54n!7Z/,%O J:vZkl]=einRVJ%^V5I, f)I! [  Y.aC"cuF%+ڥUi4NDcsPG{9*YAv9p"` ~3)$L~tB֒kno0缩-Ear =t Ҹgh n g 2:*Urb#IG'r ,b_;JSP"#PET`5ⸯ)2,/cYc/L3h@P _r3z>5b]XXW֢ڣ`g#RF@Xp ԡanԘ!U@b--Ӧ̀A򈣹c0ѷ@p9WBAF!k)"Få۟rK.K$jŀvVJ#] n"3sD*̠74Ns) 蔭SWd$o <Կ vJn{1Er_Ob 2vCcp{V".yb_[`j0ૂ9fOӦ7h+ǔ{Lr dlu˵>l|&<1;Sa2`+54qBn|XmVë;QjsX @LSVDolJ5}a\=x͐x?.ގa.ʍ^fIR-E* gf`uD0B` ."Oz(K֭P#$雄R.+W>e7]-O-*PY)36\(\J:=(sr*"3p."rTw)6`F1r /Oirso=ATډ)wOhP_ aevPN`՛ٍXچÑ S^, i@j ;ucgDV ,3 Qp=Owq`,s$.42? G"vƍRryʖS]$DWQ0ȞA`Bn{z$Xza[Ь), L{q XE/3F2c ^'g_$շL(fjw nf)lD b#~e}U lgdm2W Eh\ybB[VD.KeoK(X ̝)/hb6Xskx_1Uu&4TbXUwtx&\Lr o9 jɄ"zk j2 4AAZr鵹!#'S08mM׉)ŵUǡ!)nO1-n\5(ܟTG>TZ\czTv 0@W1 @0mRvRtdJܼR@F2"54BA6(gLkBiNfRQݼ*0<,805 g>=2R/m/5Ev7;"79n 32 %5Щ3Qƻ ȿ "WյGU QSN-·.{ʞm.WjN'Ԍ,(ڰ`Q%,.@|B O[igOx,(cQs*8!A@!Z\"ɲd vvM(hM#$=Stϑ׷8cZvF#SOLِb!: U|P*VZb֡O+SK/cPx r {/"ٽc30a,KTBf{|Ӵ3Cee\[a0ivQ0PZl3\ҳFc Pg VJ.`Uyq=xu+46\h+ m{]xϰf@>#v㰖)^V.1I퀘 [XٖuZ)`&l{٪9kGA(Uut@]T+y_*\p=fZS*X~p܅m9m* u3oԷ+m!Ig7L_buRXj}Pϸ's7 b ObK#~b-(b\sLD, dҏtfR/;ui%^qb to!PggkXAScNC}ojHb1:fKF qN?.e? qPi|v" &bKq tf"0b]>#V.QpswMcz,@[~b~Q骸U&6 [!+/}azHe2f-K8q1N֪UNSe.,7pDh>z%w497a*Ulmh"sb k75{bP]Q'Ee5wO+uUDwfljE0[w!,чɘY+[؊A}/~]hj?eAgQ<35V' ;o/,lEe. Q6pY2 X 7*S;.+־ɚAՌO.YV\3^<#;(F奱O~Q򧐝vX׳*1v0# M)FhFfDfY~߷NGi'AKq 8Ɛl}V;B&񕯍"D(Ͳ|BEN އ/t$e[CvdCL MYmƎ.TWp =xүew@c%h̨UJ5@Ҧ)pneYJ0P-"aq`7oi,!bZ+q( y9Y̻q8R e8I46eY"[RsHhز4A…o^p^7ܢrg2ݟ\;.ị% l%B`QyG\F[[\% Ơ ^8DUzUl*D5'1EW y;p56b( :7v~(MmSVn`:VB+l"o-;̸ՋL:D, fw~rF#: ߴbΘ%&ILdJq \4m.qv*ٵcDW,3,ᭅFBh@f y7Vr1-qU@!yWn-ET%hY6S2ĭR(Kl.8n4 'l#ԸF.c>cVhj#( 9v>nS(ޮ+ L>B,6:Uj,LS^@fP֕ y,he*5dȇvQbr#SAu0Z{̿ĭLV(6/zeо%r8r4#-%Rsi̳<_/CY2 >ks28{K"\1l^Ɲ&b|i!X\H`j+,B >a* l׻.pJr@-¥Uo-SXR7[d3b5CXams2}43اDF2𜟨KwEƍ/Z1Nd2n'޻NTd|Mx)?fm][~ɗv% Hߒ Ar‡1iмX4X&ʓA~.Z.GI^v|BUɘ_4Kڲ,!A;( (`Sd+GuWtq rZSW5UCMRPXL1m8|@g8̡tlm,]ʪe.4M1}v2rITĭ9~PH߆qdhFܙ7M@yUanEE1lZZ0Pq@uK^W gWA1gx-S%n}Y" "3;'0h[Co-("@}b_mANvNo࿹_wCINvGL슕h?/v|~ S~?a-XҲ+?0TZFfN/E?r1Jⱏ*{ؽ1.U.0s*xw|ᘤ$~I&]C=K0]'ܴ 9}x2i4Xd<&Ƞ6)|d3c .&N{\UԶ6]V aшPA]&ͭZsSg򷃛2*M%^M&u 7bV@/rQMfDQÇV1q8"Emw+_{&$J+;@4gO̲ ˳߁>D/ &Z;GVV^m)|R5H&6=`~ѨnYdzR`M".Eb]R}EBoo`Z&Jx ߙfj5=E" | !Y3&p ι"$g;˪$D4,5M]HJ&X`6,FTE ]+CYV]7Y]a .lͱE 4#1b3 h],tby bpX%%su[f Qnh&Q|D \HoA;`4؇!7AnKa3guBpL(o}K'Wq F \PK$̬qIN},?07)-iܳq5 m2Y (#k|gXR'?#QBo Հ!m}@.˚Arr%-]Y<ȋz&L&{[ÿ2zLc : 3-:4/}iwPch#|Vh|ƹ5rGwmf:w2RL+QqnY4شuD Vv Wj1򺶧kAR+egb*ཏK÷7@4%1M]%T%VX@$l{fvsօ ^W9~V{%S$<"; #6_=΄w}RAbV*bGSR\c4;Lf%DqKswᘀKsMF;BGt뗣 2*qVfh6_lr+$GDwv_'<{)cy9qpV\Uj=ʙlRZA"Φs_;#Hbe&!%> Pԡ!4xҔ”_DTÚnT E]7W%"휆Tv.ͿE€8)e*]{FexĶedTƝFH[Lbv @tTC|Z\pJaAVjZ;cT*)n_!%ў26Θow&f,o `,Z8+ g S78n+$.L/"k}{ Jah*Q~q7|ef+ł1Ʉ2[$c,eAiZhU}$s,G/ TYj"AbweCB̓=ux]Cl&l|4ZrPX45ah  y5`=;9e 4A ئ`yk&XQc C5M0ԳA!o*!0e68GLb` –/(\U˥%b'f bVDI>*)|2C5q!/4=[LH6%i!abEVjU2D~X/UQz>Pܾs6*bes XF ኹJ>lb8鋯A:'"xS!MT%(WB {DAn7oy\GGZ!d}Bh %A*(QG{j:d n -,$f [Bqm)"Lh UP5X[. ~+ 3׮ oaߕhTL,E"c@U]h,נcKpro2t[&y3gzK}F^$mUj1}#wcU1˿1Ífo'VdzIH[tL)ipN9Z*dآiZeQxã'fgyO] jRq To(Xٖ`2)⩑1cx< ٘z0A H򙋖g*C_A,(7!@0@[0I&уTVtNnWN ٘,.'m_*un֠q-%j6f)R ^{K+UF6T/q>6QVeUq3-D%VW[weoUM7ž#f@UZ 5(/$ei+loqi Ւ֮i5J;a3VŸW*[ZUPH8&;$4%a|lq@&oD8@oo/.R.^,?WIBgeЗ< 򦒺NT=2c!ڲ@?XcK xaV]> Lb}SjI4q9LRan}(:Ȍdy1Q0)뙈c7yn*FQ[``mf5{ &hes3=j]RYwjR)4QT*WiVhSl9bʁXj! fkLJ0;wKnT,hyBk>heWK)7=<Wjp*9 eXj7r|aPzv5vq{tS<@*!E2P ^pA6QIGgYvHKxgf!nw+LDVdWzdw ֗=HK0W^ yYww P1߷UKGmoiYNe-=n9sEJxǖ`97'NG EU8ݙƕe C 1J-pDIh%Z x?'a97}O64@tLR|G&theԔ B("d&a.Hee.q~h [0>FV/x -mt@4Z)dEY[fc?2LSASM )6ALU#$sNPZx9qnŸ4#c 4@wt0_JؓU;18#[ SFVXcyNM;*)*̷KGvA "0Kҭ,J"xӏ(jaYŘ7+\ ɔLQa2ih ;TstTD丘 Gf@{Љ?r zVفQ9n_׆v)wڋXaS|۽],q|E0!:RS= Zd/89^+kb uDWl)v8 Af{4(Yyn̰䯍{ {Z6DkRQ@  C^&jD!6q~ _@zH|FZ ՗0Qq{I|"Pz-AC6L-D)4spq`b0^c Kv,(U|EAnp6xށ\.c ^#(1TeLO%bR >JS 0eAH6ʄiWQ4;eTw}xD7 3;'%s~Ҟhܫx};&2}יnnљP+, qe)O0C men6Zl çDRT2|nʎg~ s~`/QUa_{Nߘ3 ADD] 5w `N AV(Ķi5NۻBO'~mt1(\BPM7uF!md ,rlآ^WF'v52PZ܈~'0ZV6P3,K">6[?b/s;vr^QK ZU;xT^LKg,n4/Ҋ(I9 V wC֠*Zp #O5zn@[`)w*K5͙nBK0k9̍5ey.~>b zqZC|Oٖg[3h |3n|Jpnr>ʝ?+*7VPLMb[Qݍ2,e ^ 7:$Di-I:{ڢRS`ʭݞd?]U/ Y8G+}٪Ke ɮPGI"ɭ `4Ɇn8`wlH3% l=V]$0B#N_c/aDĠS4J3z`WeCEwTb9|o1E/bw"v=q7:i.CCheEŰ('sMr֮4"`d{ogԣj7b kR@b/u0(f&ں7ĺ3wQ4y%,4_I[MKS#' K;#;a(:ebJs~WCIxVa]O7o8 Id +/۰'`nMO1I\> 79{Nu7@IPttn,4qW@UZ" v@{>c)u|MȽWI [N"#V>"AKS!vfzK8Cؗɦ[xBRaa5ŹLs`˖!PÝQK'AwCݧs&j)[Y}ٖ2O1jA%:*eKP^}sƎ* + =Rh(}"!>l Zw>e#Er+,Os|^RF A/-=$g,ݡ~1l40Bd)m'Aߚ1J,.kL>E' c~o o0\d{_$טd'\N f@U@{$X 8{'5?hcn5чJ>e/D{6U;fW9XG}[!q13a@,6W3whdy!fQiw*XEx_XfM A`̢\Y,qzc,}{&vndv˫ۂTļbŃ._E˗J2~^b8e203E@EA@.Y'&_]i< qy|a8z#6HRŜc#4/xPJyy7`1t=UCkaϸZpfDpG?A2$h(A5v67 NUocEUy{m%Mȗg0^<%"Ҹķ0UhUe;ZqqF$n}s9J(tV(a9\;I 7p:1vkYFmf:+w)N٥v/V+Lʿ3ATo&>IH&f誶*\sY;k[Yг1"& `Y{pK|EWe;%V4Z*Tۇ1b/"pA AKja q͌.j9U1[BG8#,d- sZLpt`oiU> )&Y9!.,RwRYPXC"FXlxln9۩3Y< je,e+6"v]۸6V>p#q7M|Z& M'i4xѭExq1PѵʉQ6hN&OeӦA"hd0ea1 mҎZk %j=Wt RR? G"b*Km~hW1/e9|sNnOZy UQV8_ʃQ['y$1,A98`rUX~܍@A,AAsYVjߘ7.i\L˩+e"HBhQh*{֫{/Yj*SM!dQzc:0ˌ9`~^ 56e&HVaX*uor;M*, hYi̻*0^a#ܫDފN: 8!x+k Xc*8>S0{\ Zô6.XP. B`sCZ?(ca K0K 1:ZE[.1,^;&:x*2{%; robTohV+g>zCNbmeawU+K0b8|=g*d4=ĨTRG~bj*) oAi0\EK 6"Tþ"l 4- vN>LA*{%ADXPDwao0Y}r0GȏZfw?Mܰ.iw.( S& 9UPo.sٜKo/><$UFx%071>F6KHq Dz\pC厭w% .*%`x8nұ,݌tTBext.rE.1vS UdA z4\k*LA.h{?IGDt)4XnBlĺvg},UܼKn̽^tgLnxJ9^3l"$aȁ LM/h;ʦz+%l5 ۫( ӵ8 z[.1uW8^ZoKswXKLb/ q"D= xD\b^}VWYL+dV̦h /p/,BDwTzo{!՝o苓f#kf࠱>ABl](ɨ' CfjhYi5aB A/1q )E(o2?Ɗ`{>6"Vdlt֮*x:Q`6dіZĿDW3z]#`4q*O䕝:i@Pr4xw-^+\9yA̴Y9&܉t +U_XPhq J dœ[_:Lo|!գ)kO4/2z0?!wO8o [>(jbT7/GcdGEc Md75!v BF<1,!*"3LtJK%NzBu OYG1bH{Kpeo%o a ʼney06&Lp5 hP^cXU{?1qLeÊ#}0[͑XWT<#+%K\SH0_I$UMҷAt#5<߆t >J=%SG#A>Jt*#m/D0O ހ~п ,W_P#H`.%-ۿL _+%7/*dZgYA~N|,H+3ƩO7~na0aWZZӱ>.6w@ TVm }BGDx%)dV4&0 f,4Khulpb\ӱ 3*Q0iUO([FO;NIED BII0_r1%l%o1v"09.!pkj4XRXpѝ|+6prŘn] n^R# U<!#(8Hiem - [N`J.T҉S" ROhk %8 u >)geQx`.q,qZ"i/e0>UqNJ\x @+rհnahG7yB!(D(̳-X'4f9[6;YP̦t35<]*%[ɇ]@nOD6#Nҽ^0yE^oh0`e;&-@yd(tx)1p'`R^E-5{Ga[_-9TեxL+m8ipV\rXqxE.ձwNupܶ9ycu)فR9:ҨMވj1Yj*!u]$\-l /£y\1i撬=Ls>Qiw`fT0dШimiX&e8TUv"( Eȯ#cpN,z0n2ZwYZP*A oga`@ Q/i -@蝪FZDM©_0 :\ΦuM\ E6V8ք GB@l|ah+Ȱ*Q'lE^fop] sYsnarX" CR%8h 䔥neIp3F0?0 hyv!^fji4eNK[x8Gj f%af/?c/ZK mW?K9A]!fvq-{h4(Q @+ZG嗟v\*,fEl^&8q[LP"rlj4 XZ;B"US l>).&. \P{)pfx2>/¬r/xx/F%Q_L|?!Fc|U_ n](N|B#P86Y蛁#agAEA18A)QxJGr.0T3W*̣]땊)*W IV]w"]Y .VS.9yT(հe3[ķc wTQ!|Nڌ\ZKxE :'v"ۊkUE3F\ g'uk,Q{45JᎾp*4J7rCe./5.a–-OlNF#+Ǹ*Ih+4{ 1%zhS<˛--,[9=S1q12˷`Hsc0S\ U}Y>X.Q)(7+5)Jw3eRkAv`s[@8weg\@5 -L@ o /1pV{Vrhde &Z b{.uu(Ec 72ؖdHg&4S-Ūyfd܊hhrܸw !ouZюoU2;`ٕX+rJRZ=Մُh6\@vąMψ:C0qIP"X9 5~.YT#DS_4\ :|8"OEs; Z*ٰ(G6gBPKߐ|{FdP3JI^ OxfeMܮG@oQ?vnR (cH ؐXm@~@Ǡ¶!EL7=VPUwx `/~1ZsL+F^* (t$SDKXwQ!aPM zŗvpj%=!h8%2FfzEiYBzO &bt hUñ#\+*d/+?nPap!N@F.ɖ{ a(%Ǚ B\b&t}gii[lG&6h<D;~.LӔ|dQ,;X4^kQl̉@5sXv0\#c!(mjYJB<76ŵ1U|. ZKffx3HD9) Icc.#H1e) ֡ܬ$]|O!x3r6c.m&88Hܗ+Dj@о&{0EQJiT8E QM/&g[oFO.[(jX$w$ݰ9:XMҸ!n%U-A@ ƒ6@~ |1H06T^ҎKGh ʦx~ݡ(]Z-Vbfod0'ZWlsC*4)8ahP#I%D\m=4 +>VM'ZHUFKwy](BQk - .2ϔT axUvz.YWX9ʨsacnC@385)_#ꇡNB0]Aġ,=&40 `'qolø ~+ R-]Q*OG4)!⢓B`= JwSU}پ,Xbcn\Me7'VL)bōm!>,ߊ_TA99P)Uce\STF=KpA FB,Xk[.qfgҟqݸjj: >b2m& [;z,0a;b D?3xhX7bʗ%p4{;#._15߷.T;oQq"'kaP^HװE#]F]V=t[)l=%e 3qnz/4; Uh JtFĺS[fV*,XF3Z@Rk4!ayr?˨9.ha a Jހb7<_اH ,uQ2y ;֭C\wz!106,F{y!ώP7D*w+bzIrOܵqK}6dDLO %,Sz')a SK2+%Ĥ7 *%5AЇ k EP8hdR[8-5Ƃ#d:dإJ卛{:[s{O":(d+ R]d] %Up7(EGs]#dǁ%7B›Hdp/w_ kjnY N1򂶷xH׶0 ɿy.W^y px{>!֤mmzT.wuM©!r xw^ݒKUT.5V0Ʌ aq w%Fyfj 7mK Kt'3UL.5,ɿ~mbĜMͳNp=1+f5Chbw\LȆ%$RRM#..9R炇?E!Db(;ɛٹ+x~ѱ&f#׉IND40JD[|/ /N V5T>%4k&]YcnR\,2p+QcK2<nW,̡RȬI6ylu$ |DmfK)-МSeA_æi;?iq&Vjterxc]q,YP\K`'Ld"&l~N +9uCaRmލR&oFpTFW١Z`]۟$uen"e~MYu}@{PmB\:B5( SDgR..)soc`"fy)^P!P:f3%`^J1jwHQ@*a _snpl>eCT S+'{.V U(1PXl@2AZ-|9yiW #O %w3k6afjJ;cM0yJ>FlQAPVS-賠86ja@$Z7eKf:?!k * xB cs̽UJ%+d|M,@ 8{scmÈW-65 KufrԸ K"(!^y?FeW@`lf~zYSg[T3f7@nez]C.0@]r,vX*w2 fj+tUC1^x{Ǹb;OB qG,ޣDEzj-`&lwءy ?gAĴ Cp゠#l 7g1{XU0.m7;0U\.RβUU0 [[Fp\"9@QqAlLveL兘-a+X ~O$Kdǖ:n!WhL؈-֏ܻ/\qR͌ÌZ8}I-jƘ`eK07!% /UɚnT",o(p~P-г&.~cJ#"@&_, ̂°ަe FT 9L o2p 2P+d`hg{vo_1-~cO1TOw K,L栂ޕ&D@u.٬ƊU.}ȚV4dU[pJ|ҖU dX¨̧Yȷ-UhDvѳaR0Y%obQT^pGȈ-K(Jdv -` ûw+D^ NϕR!M_IWGRЂ{ M%jNkFR[;G3 PwZ +/aEu>E#dyVf xXov7$%)ڹG)0zj#AjY mxFū D.2#"vp/p6=s(ܮQ悆X`m7XJȇgq`Ӄmka ̶M)RB`[ &-%kTӪ10q6 0z+#+f#A|$o%C?؏TWLXx؎TY6|Ԫa0@HH0Td ZVeArQ|m"4 >me,5; +DB(lR[̯$ P )BCD\`Mwa97b(&3h[tԁeQx(\$b#Bs 095BEуnWS8)|D=tЕPKh]-MXP2f#Rp:V's0vx<&=uiو# mm  s7M16` KdV(`ef<^ҸL[\"]1ޠ|0<^UycG$9?bˈXrbjhx @RsWKޭ6ЃW,pWf|j KU;\Y^a! M(.Xc*86 er+U'F_<]=q\30C Ҍ9.,Bs 2R͌J4 ǵHÃFYPGÌ3^̗`z3n l I4m̃v7Ohdr5* E& 5`_Mie3%hɉp1Z(k@*E'^<+uɉ]pCL[Y%TlDUt ;V']kp0]& \D(:&iu瘿Hmy/%^& ei-V,))> Z?e[4!ݓb)" W{+eӕ5y2,w,W9zK/B{f­|6 F&p+z{P鵗Rl<3{z*Ux+qa|"ysBu@zYD,9^K5K}P-艔K>f躋y/#2Gdqn` ^ )Kaǔ) \WB-90 ys2[Lfc|H*̭@IK95!t'4L2EM!21 kj92 @L̕ͅv0ӄ11|UpQ79En`1,g'yx (K k!0ґ:ROҞ{Ѐ0md=jEdۮ1 B%j Utn]^cmԤL5,‹cl5Z muzZ wK7uX 1mBO+k0q6L7V` sNa=HC:a4BÁCݿeͿ)y-4F@ H9Y,ړ!|  ,ض\j`(Ja}NNQ t,@q]EBPF.ES-ҡFF4{1-GSIjfuQz|3#3j.Fc8z1hGst옩(.UU 3xc v%,&UxC +B6=ܾOd802›KnnAo}XgF͢cϽ/N?1R>-+u^ ȍxUnC`UQvCw;_pT-0|~ 85[r>V7Jm{>(Ÿ%DSfŨ~ Dq$@ ˂pG8eU&6 xcbC6Y%%%0p!mh+G@a-P2-=ڵ+Mvek,H!*gy3ʀ2r% 3^B6(wP= 4)G4TZEH3V<[A@#!@>)vxa'/cmJ(Pa8^c7}" ʯ+9[/P\@@#PV]QmObC)`ܡ'}PŏiQ'6;h4kY%̳1"![18eq`áYi.D>yFg.Z?aIu`}B_yeVA 7UKA9ؠΎuN.a! *iAM-*F LiĬvܵ~vm>NH`KeSFY3B*cN2F#sw˖䬹AeYZ R\KX{׬v$.k ʿ3Ef֦'W=0T_Kck^n-ZB0\RJ ReA%u5P ɫ ߃ kɹ_l m p,edgS{m{s ,hzki͡y-7͑ m+=)xSp{gG`XJcU9fhbL@4. ng\fgţl~&,&6E-n,&B LejQ Fy4TZ6_RR`t^5 4i棣}9鰘"O,f?LYA˜y]) ]+0gQBI FqU/]ыx0zL)%P3Ig̼.) 12W%\j~JٚK mZal٧a @jWC/71 L+eU,<L5dR,69ơ+Zn? rȌ.+)2CAR#;25< @;=1O67:Y"~5I%]8UċBk0ǥv&Wj8PXJ,68HY;U~SGJ~dꩤyEL֒T/yd ŰǴh18\Rf$Ӝ~V 4l֌*6é<}"u(c xavf ۹:%% %؏sf1#1!oZ_8\`T֮Xg&lC`ULP9MLFt}lk\@+Mʈ1x(K3b-&Ҕj6@`!QV.Xl4>Ax啇6URLD6r7KkԲM/u TDA/k6@Q5QY a*6Xg +nԠ">pK3Q.8qMl.*/G0O`jyߋF[W.<\Tqh8MHY#7]ŀi4"a;qG Nw;%F6FXSWuf1_ht+X9IzJNjS`H+meyb7 1^I_ Zns/ ;-2 Jlo.30.w=_5R(Wph袹L:/1_k6h-# &4@s?PF0R(s'"8NLq5TSHMʱV ᴄ Zv%8jxQ*E,(9EjhةH m7x'.L@lpZ`\Qa,Y,65k6g^ˤe`K>'.Vrfq LJ М6isV*}0Q;Eo)W̒jзm wJ-0%w?A tj7S$q^if.LF  Ma!0ۺOИtèXZ$)g v}m? *>e\Ee>3V>PU߂)v0]ַ0#L9WٌTBq[m_|{㢚Jȵ T[e 8VܬjR^ TF4 hdlcdp b[j^^%L7pzfQ>udAc~tPc3TA¯n{Q2q~ 9VK:T@aL/pL0,L:eo!* Jh.jR󽌤n@>%%%TA.23<Ŏ Vn?fHm1dSLüe^Ⱥ+p2(cظ4myaaZh^:CI䀛unr4$6֌;FXuBzc?3FǵyHr=6?*=Vd'## =1 JeB[oJ(Pji&ܥ[dFTyDP!:S:[Hp@t!?drߕJnʌÍ1=Qh'Q>VXj":ˇTXd@HfX Q7+!~:'J1Fd̞` )hӥ%* )fO  ,%j\-~Fzad3/KYEky'.˦4%\/.<U*4)enlX..>hip&Y@ɔ+TUƌqTńܭm xauyn8ͽ՚fƽRiO7cN <N\O*R\W剪6S^;p+G33FEb{YXU|ehG<" v(T¥1J]!w"81FjUN#-;́?U 2Ytw&#)` $I.@4\JhʔpVXN&Ռ!~ C MC}+
Linux 4gvps.4gvps.com 3.10.0-1127.18.2.vz7.163.46 #1 SMP Fri Nov 20 21:47:55 MSK 2020 x86_64
  SOFT : Apache PHP : 7.4.33
/proc/self/root/usr/share/perl5/Math/
38.135.39.45

 
[ NAME ] [ SIZE ] [ PERM ] [ DATE ] [ ACT ]
+FILE +DIR
BigFloat dir drwxr-xr-x 2024-07-03 01:15 R D
BigInt dir drwxr-xr-x 2024-07-03 01:15 R D
BigFloat.pm 130.666 KB -rw-r--r-- 2023-10-25 12:41 R E G D
BigInt.pm 154.796 KB -rw-r--r-- 2023-10-25 12:41 R E G D
BigRat.pm 51.53 KB -rw-r--r-- 2023-10-25 12:41 R E G D
Complex.pm 48.28 KB -rw-r--r-- 2023-10-25 12:41 R E G D
Trig.pm 20.873 KB -rw-r--r-- 2023-10-25 12:41 R E G D
REQUEST EXIT
# # Complex numbers and associated mathematical functions # -- Raphael Manfredi Since Sep 1996 # -- Jarkko Hietaniemi Since Mar 1997 # -- Daniel S. Lewart Since Sep 1997 # package Math::Complex; { use 5.006; } use strict; our $VERSION = 1.59; use Config; our($Inf, $ExpInf); BEGIN { my %DBL_MAX = ( 4 => '1.70141183460469229e+38', 8 => '1.7976931348623157e+308', # AFAICT the 10, 12, and 16-byte long doubles # all have the same maximum. 10 => '1.1897314953572317650857593266280070162E+4932', 12 => '1.1897314953572317650857593266280070162E+4932', 16 => '1.1897314953572317650857593266280070162E+4932', ); my $nvsize = $Config{nvsize} || ($Config{uselongdouble} && $Config{longdblsize}) || $Config{doublesize}; die "Math::Complex: Could not figure out nvsize\n" unless defined $nvsize; die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n" unless defined $DBL_MAX{$nvsize}; my $DBL_MAX = eval $DBL_MAX{$nvsize}; die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n" unless defined $DBL_MAX; my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this. if ($^O eq 'unicosmk') { $Inf = $DBL_MAX; } else { local $SIG{FPE} = { }; local $!; # We do want an arithmetic overflow, Inf INF inf Infinity. for my $t ( 'exp(99999)', # Enough even with 128-bit long doubles. 'inf', 'Inf', 'INF', 'infinity', 'Infinity', 'INFINITY', '1e99999', ) { local $^W = 0; my $i = eval "$t+1.0"; if (defined $i && $i > $BIGGER_THAN_THIS) { $Inf = $i; last; } } $Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough. die "Math::Complex: Could not get Infinity" unless $Inf > $BIGGER_THAN_THIS; $ExpInf = exp(99999); } # print "# On this machine, Inf = '$Inf'\n"; } use Scalar::Util qw(set_prototype); use warnings; no warnings 'syntax'; # To avoid the (_) warnings. BEGIN { # For certain functions that we override, in 5.10 or better # we can set a smarter prototype that will handle the lexical $_ # (also a 5.10+ feature). if ($] >= 5.010000) { set_prototype \&abs, '_'; set_prototype \&cos, '_'; set_prototype \&exp, '_'; set_prototype \&log, '_'; set_prototype \&sin, '_'; set_prototype \&sqrt, '_'; } } my $i; my %LOGN; # Regular expression for floating point numbers. # These days we could use Scalar::Util::lln(), I guess. my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i; require Exporter; our @ISA = qw(Exporter); my @trig = qw( pi tan csc cosec sec cot cotan asin acos atan acsc acosec asec acot acotan sinh cosh tanh csch cosech sech coth cotanh asinh acosh atanh acsch acosech asech acoth acotanh ); our @EXPORT = (qw( i Re Im rho theta arg sqrt log ln log10 logn cbrt root cplx cplxe atan2 ), @trig); my @pi = qw(pi pi2 pi4 pip2 pip4 Inf); our @EXPORT_OK = @pi; our %EXPORT_TAGS = ( 'trig' => [@trig], 'pi' => [@pi], ); use overload '=' => \&_copy, '+=' => \&_plus, '+' => \&_plus, '-=' => \&_minus, '-' => \&_minus, '*=' => \&_multiply, '*' => \&_multiply, '/=' => \&_divide, '/' => \&_divide, '**=' => \&_power, '**' => \&_power, '==' => \&_numeq, '<=>' => \&_spaceship, 'neg' => \&_negate, '~' => \&_conjugate, 'abs' => \&abs, 'sqrt' => \&sqrt, 'exp' => \&exp, 'log' => \&log, 'sin' => \&sin, 'cos' => \&cos, 'atan2' => \&atan2, '""' => \&_stringify; # # Package "privates" # my %DISPLAY_FORMAT = ('style' => 'cartesian', 'polar_pretty_print' => 1); my $eps = 1e-14; # Epsilon # # Object attributes (internal): # cartesian [real, imaginary] -- cartesian form # polar [rho, theta] -- polar form # c_dirty cartesian form not up-to-date # p_dirty polar form not up-to-date # display display format (package's global when not set) # # Die on bad *make() arguments. sub _cannot_make { die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"; } sub _make { my $arg = shift; my ($p, $q); if ($arg =~ /^$gre$/) { ($p, $q) = ($1, 0); } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { ($p, $q) = ($1 || 0, $2); } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) { ($p, $q) = ($1, $2 || 0); } if (defined $p) { $p =~ s/^\+//; $p =~ s/^(-?)inf$/"${1}9**9**9"/e; $q =~ s/^\+//; $q =~ s/^(-?)inf$/"${1}9**9**9"/e; } return ($p, $q); } sub _emake { my $arg = shift; my ($p, $q); if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { ($p, $q) = ($1, $2 || 0); } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) { ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1)); } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) { ($p, $q) = ($1, 0); } elsif ($arg =~ /^\s*$gre\s*$/) { ($p, $q) = ($1, 0); } if (defined $p) { $p =~ s/^\+//; $q =~ s/^\+//; $p =~ s/^(-?)inf$/"${1}9**9**9"/e; $q =~ s/^(-?)inf$/"${1}9**9**9"/e; } return ($p, $q); } sub _copy { my $self = shift; my $clone = {%$self}; if ($self->{'cartesian'}) { $clone->{'cartesian'} = [@{$self->{'cartesian'}}]; } if ($self->{'polar'}) { $clone->{'polar'} = [@{$self->{'polar'}}]; } bless $clone,__PACKAGE__; return $clone; } # # ->make # # Create a new complex number (cartesian form) # sub make { my $self = bless {}, shift; my ($re, $im); if (@_ == 0) { ($re, $im) = (0, 0); } elsif (@_ == 1) { return (ref $self)->emake($_[0]) if ($_[0] =~ /^\s*\[/); ($re, $im) = _make($_[0]); } elsif (@_ == 2) { ($re, $im) = @_; } if (defined $re) { _cannot_make("real part", $re) unless $re =~ /^$gre$/; } $im ||= 0; _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; $self->_set_cartesian([$re, $im ]); $self->display_format('cartesian'); return $self; } # # ->emake # # Create a new complex number (exponential form) # sub emake { my $self = bless {}, shift; my ($rho, $theta); if (@_ == 0) { ($rho, $theta) = (0, 0); } elsif (@_ == 1) { return (ref $self)->make($_[0]) if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/); ($rho, $theta) = _emake($_[0]); } elsif (@_ == 2) { ($rho, $theta) = @_; } if (defined $rho && defined $theta) { if ($rho < 0) { $rho = -$rho; $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); } } if (defined $rho) { _cannot_make("rho", $rho) unless $rho =~ /^$gre$/; } $theta ||= 0; _cannot_make("theta", $theta) unless $theta =~ /^$gre$/; $self->_set_polar([$rho, $theta]); $self->display_format('polar'); return $self; } sub new { &make } # For backward compatibility only. # # cplx # # Creates a complex number from a (re, im) tuple. # This avoids the burden of writing Math::Complex->make(re, im). # sub cplx { return __PACKAGE__->make(@_); } # # cplxe # # Creates a complex number from a (rho, theta) tuple. # This avoids the burden of writing Math::Complex->emake(rho, theta). # sub cplxe { return __PACKAGE__->emake(@_); } # # pi # # The number defined as pi = 180 degrees # sub pi () { 4 * CORE::atan2(1, 1) } # # pi2 # # The full circle # sub pi2 () { 2 * pi } # # pi4 # # The full circle twice. # sub pi4 () { 4 * pi } # # pip2 # # The quarter circle # sub pip2 () { pi / 2 } # # pip4 # # The eighth circle. # sub pip4 () { pi / 4 } # # _uplog10 # # Used in log10(). # sub _uplog10 () { 1 / CORE::log(10) } # # i # # The number defined as i*i = -1; # sub i () { return $i if ($i); $i = bless {}; $i->{'cartesian'} = [0, 1]; $i->{'polar'} = [1, pip2]; $i->{c_dirty} = 0; $i->{p_dirty} = 0; return $i; } # # _ip2 # # Half of i. # sub _ip2 () { i / 2 } # # Attribute access/set routines # sub _cartesian {$_[0]->{c_dirty} ? $_[0]->_update_cartesian : $_[0]->{'cartesian'}} sub _polar {$_[0]->{p_dirty} ? $_[0]->_update_polar : $_[0]->{'polar'}} sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0; $_[0]->{'cartesian'} = $_[1] } sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0; $_[0]->{'polar'} = $_[1] } # # ->_update_cartesian # # Recompute and return the cartesian form, given accurate polar form. # sub _update_cartesian { my $self = shift; my ($r, $t) = @{$self->{'polar'}}; $self->{c_dirty} = 0; return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; } # # # ->_update_polar # # Recompute and return the polar form, given accurate cartesian form. # sub _update_polar { my $self = shift; my ($x, $y) = @{$self->{'cartesian'}}; $self->{p_dirty} = 0; return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), CORE::atan2($y, $x)]; } # # (_plus) # # Computes z1+z2. # sub _plus { my ($z1, $z2, $regular) = @_; my ($re1, $im1) = @{$z1->_cartesian}; $z2 = cplx($z2) unless ref $z2; my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); unless (defined $regular) { $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]); return $z1; } return (ref $z1)->make($re1 + $re2, $im1 + $im2); } # # (_minus) # # Computes z1-z2. # sub _minus { my ($z1, $z2, $inverted) = @_; my ($re1, $im1) = @{$z1->_cartesian}; $z2 = cplx($z2) unless ref $z2; my ($re2, $im2) = @{$z2->_cartesian}; unless (defined $inverted) { $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]); return $z1; } return $inverted ? (ref $z1)->make($re2 - $re1, $im2 - $im1) : (ref $z1)->make($re1 - $re2, $im1 - $im2); } # # (_multiply) # # Computes z1*z2. # sub _multiply { my ($z1, $z2, $regular) = @_; if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { # if both polar better use polar to avoid rounding errors my ($r1, $t1) = @{$z1->_polar}; my ($r2, $t2) = @{$z2->_polar}; my $t = $t1 + $t2; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } unless (defined $regular) { $z1->_set_polar([$r1 * $r2, $t]); return $z1; } return (ref $z1)->emake($r1 * $r2, $t); } else { my ($x1, $y1) = @{$z1->_cartesian}; if (ref $z2) { my ($x2, $y2) = @{$z2->_cartesian}; return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); } else { return (ref $z1)->make($x1*$z2, $y1*$z2); } } } # # _divbyzero # # Die on division by zero. # sub _divbyzero { my $mess = "$_[0]: Division by zero.\n"; if (defined $_[1]) { $mess .= "(Because in the definition of $_[0], the divisor "; $mess .= "$_[1] " unless ("$_[1]" eq '0'); $mess .= "is 0)\n"; } my @up = caller(1); $mess .= "Died at $up[1] line $up[2].\n"; die $mess; } # # (_divide) # # Computes z1/z2. # sub _divide { my ($z1, $z2, $inverted) = @_; if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { # if both polar better use polar to avoid rounding errors my ($r1, $t1) = @{$z1->_polar}; my ($r2, $t2) = @{$z2->_polar}; my $t; if ($inverted) { _divbyzero "$z2/0" if ($r1 == 0); $t = $t2 - $t1; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } return (ref $z1)->emake($r2 / $r1, $t); } else { _divbyzero "$z1/0" if ($r2 == 0); $t = $t1 - $t2; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } return (ref $z1)->emake($r1 / $r2, $t); } } else { my ($d, $x2, $y2); if ($inverted) { ($x2, $y2) = @{$z1->_cartesian}; $d = $x2*$x2 + $y2*$y2; _divbyzero "$z2/0" if $d == 0; return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); } else { my ($x1, $y1) = @{$z1->_cartesian}; if (ref $z2) { ($x2, $y2) = @{$z2->_cartesian}; $d = $x2*$x2 + $y2*$y2; _divbyzero "$z1/0" if $d == 0; my $u = ($x1*$x2 + $y1*$y2)/$d; my $v = ($y1*$x2 - $x1*$y2)/$d; return (ref $z1)->make($u, $v); } else { _divbyzero "$z1/0" if $z2 == 0; return (ref $z1)->make($x1/$z2, $y1/$z2); } } } } # # (_power) # # Computes z1**z2 = exp(z2 * log z1)). # sub _power { my ($z1, $z2, $inverted) = @_; if ($inverted) { return 1 if $z1 == 0 || $z2 == 1; return 0 if $z2 == 0 && Re($z1) > 0; } else { return 1 if $z2 == 0 || $z1 == 1; return 0 if $z1 == 0 && Re($z2) > 0; } my $w = $inverted ? &exp($z1 * &log($z2)) : &exp($z2 * &log($z1)); # If both arguments cartesian, return cartesian, else polar. return $z1->{c_dirty} == 0 && (not ref $z2 or $z2->{c_dirty} == 0) ? cplx(@{$w->_cartesian}) : $w; } # # (_spaceship) # # Computes z1 <=> z2. # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. # sub _spaceship { my ($z1, $z2, $inverted) = @_; my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); my $sgn = $inverted ? -1 : 1; return $sgn * ($re1 <=> $re2) if $re1 != $re2; return $sgn * ($im1 <=> $im2); } # # (_numeq) # # Computes z1 == z2. # # (Required in addition to _spaceship() because of NaNs.) sub _numeq { my ($z1, $z2, $inverted) = @_; my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); return $re1 == $re2 && $im1 == $im2 ? 1 : 0; } # # (_negate) # # Computes -z. # sub _negate { my ($z) = @_; if ($z->{c_dirty}) { my ($r, $t) = @{$z->_polar}; $t = ($t <= 0) ? $t + pi : $t - pi; return (ref $z)->emake($r, $t); } my ($re, $im) = @{$z->_cartesian}; return (ref $z)->make(-$re, -$im); } # # (_conjugate) # # Compute complex's _conjugate. # sub _conjugate { my ($z) = @_; if ($z->{c_dirty}) { my ($r, $t) = @{$z->_polar}; return (ref $z)->emake($r, -$t); } my ($re, $im) = @{$z->_cartesian}; return (ref $z)->make($re, -$im); } # # (abs) # # Compute or set complex's norm (rho). # sub abs { my ($z, $rho) = @_ ? @_ : $_; unless (ref $z) { if (@_ == 2) { $_[0] = $_[1]; } else { return CORE::abs($z); } } if (defined $rho) { $z->{'polar'} = [ $rho, ${$z->_polar}[1] ]; $z->{p_dirty} = 0; $z->{c_dirty} = 1; return $rho; } else { return ${$z->_polar}[0]; } } sub _theta { my $theta = $_[0]; if ($$theta > pi()) { $$theta -= pi2 } elsif ($$theta <= -pi()) { $$theta += pi2 } } # # arg # # Compute or set complex's argument (theta). # sub arg { my ($z, $theta) = @_; return $z unless ref $z; if (defined $theta) { _theta(\$theta); $z->{'polar'} = [ ${$z->_polar}[0], $theta ]; $z->{p_dirty} = 0; $z->{c_dirty} = 1; } else { $theta = ${$z->_polar}[1]; _theta(\$theta); } return $theta; } # # (sqrt) # # Compute sqrt(z). # # It is quite tempting to use wantarray here so that in list context # sqrt() would return the two solutions. This, however, would # break things like # # print "sqrt(z) = ", sqrt($z), "\n"; # # The two values would be printed side by side without no intervening # whitespace, quite confusing. # Therefore if you want the two solutions use the root(). # sub sqrt { my ($z) = @_ ? $_[0] : $_; my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0); return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) if $im == 0; my ($r, $t) = @{$z->_polar}; return (ref $z)->emake(CORE::sqrt($r), $t/2); } # # cbrt # # Compute cbrt(z) (cubic root). # # Why are we not returning three values? The same answer as for sqrt(). # sub cbrt { my ($z) = @_; return $z < 0 ? -CORE::exp(CORE::log(-$z)/3) : ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) unless ref $z; my ($r, $t) = @{$z->_polar}; return 0 if $r == 0; return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); } # # _rootbad # # Die on bad root. # sub _rootbad { my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n"; my @up = caller(1); $mess .= "Died at $up[1] line $up[2].\n"; die $mess; } # # root # # Computes all nth root for z, returning an array whose size is n. # `n' must be a positive integer. # # The roots are given by (for k = 0..n-1): # # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) # sub root { my ($z, $n, $k) = @_; _rootbad($n) if ($n < 1 or int($n) != $n); my ($r, $t) = ref $z ? @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); my $theta_inc = pi2 / $n; my $rho = $r ** (1/$n); my $cartesian = ref $z && $z->{c_dirty} == 0; if (@_ == 2) { my @root; for (my $i = 0, my $theta = $t / $n; $i < $n; $i++, $theta += $theta_inc) { my $w = cplxe($rho, $theta); # Yes, $cartesian is loop invariant. push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w; } return @root; } elsif (@_ == 3) { my $w = cplxe($rho, $t / $n + $k * $theta_inc); return $cartesian ? cplx(@{$w->_cartesian}) : $w; } } # # Re # # Return or set Re(z). # sub Re { my ($z, $Re) = @_; return $z unless ref $z; if (defined $Re) { $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ]; $z->{c_dirty} = 0; $z->{p_dirty} = 1; } else { return ${$z->_cartesian}[0]; } } # # Im # # Return or set Im(z). # sub Im { my ($z, $Im) = @_; return 0 unless ref $z; if (defined $Im) { $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ]; $z->{c_dirty} = 0; $z->{p_dirty} = 1; } else { return ${$z->_cartesian}[1]; } } # # rho # # Return or set rho(w). # sub rho { Math::Complex::abs(@_); } # # theta # # Return or set theta(w). # sub theta { Math::Complex::arg(@_); } # # (exp) # # Computes exp(z). # sub exp { my ($z) = @_ ? @_ : $_; return CORE::exp($z) unless ref $z; my ($x, $y) = @{$z->_cartesian}; return (ref $z)->emake(CORE::exp($x), $y); } # # _logofzero # # Die on logarithm of zero. # sub _logofzero { my $mess = "$_[0]: Logarithm of zero.\n"; if (defined $_[1]) { $mess .= "(Because in the definition of $_[0], the argument "; $mess .= "$_[1] " unless ($_[1] eq '0'); $mess .= "is 0)\n"; } my @up = caller(1); $mess .= "Died at $up[1] line $up[2].\n"; die $mess; } # # (log) # # Compute log(z). # sub log { my ($z) = @_ ? @_ : $_; unless (ref $z) { _logofzero("log") if $z == 0; return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); } my ($r, $t) = @{$z->_polar}; _logofzero("log") if $r == 0; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } return (ref $z)->make(CORE::log($r), $t); } # # ln # # Alias for log(). # sub ln { Math::Complex::log(@_) } # # log10 # # Compute log10(z). # sub log10 { return Math::Complex::log($_[0]) * _uplog10; } # # logn # # Compute logn(z,n) = log(z) / log(n) # sub logn { my ($z, $n) = @_; $z = cplx($z, 0) unless ref $z; my $logn = $LOGN{$n}; $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) return &log($z) / $logn; } # # (cos) # # Compute cos(z) = (exp(iz) + exp(-iz))/2. # sub cos { my ($z) = @_ ? @_ : $_; return CORE::cos($z) unless ref $z; my ($x, $y) = @{$z->_cartesian}; my $ey = CORE::exp($y); my $sx = CORE::sin($x); my $cx = CORE::cos($x); my $ey_1 = $ey ? 1 / $ey : Inf(); return (ref $z)->make($cx * ($ey + $ey_1)/2, $sx * ($ey_1 - $ey)/2); } # # (sin) # # Compute sin(z) = (exp(iz) - exp(-iz))/2. # sub sin { my ($z) = @_ ? @_ : $_; return CORE::sin($z) unless ref $z; my ($x, $y) = @{$z->_cartesian}; my $ey = CORE::exp($y); my $sx = CORE::sin($x); my $cx = CORE::cos($x); my $ey_1 = $ey ? 1 / $ey : Inf(); return (ref $z)->make($sx * ($ey + $ey_1)/2, $cx * ($ey - $ey_1)/2); } # # tan # # Compute tan(z) = sin(z) / cos(z). # sub tan { my ($z) = @_; my $cz = &cos($z); _divbyzero "tan($z)", "cos($z)" if $cz == 0; return &sin($z) / $cz; } # # sec # # Computes the secant sec(z) = 1 / cos(z). # sub sec { my ($z) = @_; my $cz = &cos($z); _divbyzero "sec($z)", "cos($z)" if ($cz == 0); return 1 / $cz; } # # csc # # Computes the cosecant csc(z) = 1 / sin(z). # sub csc { my ($z) = @_; my $sz = &sin($z); _divbyzero "csc($z)", "sin($z)" if ($sz == 0); return 1 / $sz; } # # cosec # # Alias for csc(). # sub cosec { Math::Complex::csc(@_) } # # cot # # Computes cot(z) = cos(z) / sin(z). # sub cot { my ($z) = @_; my $sz = &sin($z); _divbyzero "cot($z)", "sin($z)" if ($sz == 0); return &cos($z) / $sz; } # # cotan # # Alias for cot(). # sub cotan { Math::Complex::cot(@_) } # # acos # # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). # sub acos { my $z = $_[0]; return CORE::atan2(CORE::sqrt(1-$z*$z), $z) if (! ref $z) && CORE::abs($z) <= 1; $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->_cartesian}; return 0 if $x == 1 && $y == 0; my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); my $alpha = ($t1 + $t2)/2; my $beta = ($t1 - $t2)/2; $alpha = 1 if $alpha < 1; if ($beta > 1) { $beta = 1 } elsif ($beta < -1) { $beta = -1 } my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); $v = -$v if $y > 0 || ($y == 0 && $x < -1); return (ref $z)->make($u, $v); } # # asin # # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). # sub asin { my $z = $_[0]; return CORE::atan2($z, CORE::sqrt(1-$z*$z)) if (! ref $z) && CORE::abs($z) <= 1; $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->_cartesian}; return 0 if $x == 0 && $y == 0; my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); my $alpha = ($t1 + $t2)/2; my $beta = ($t1 - $t2)/2; $alpha = 1 if $alpha < 1; if ($beta > 1) { $beta = 1 } elsif ($beta < -1) { $beta = -1 } my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); $v = -$v if $y > 0 || ($y == 0 && $x < -1); return (ref $z)->make($u, $v); } # # atan # # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). # sub atan { my ($z) = @_; return CORE::atan2($z, 1) unless ref $z; my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0); return 0 if $x == 0 && $y == 0; _divbyzero "atan(i)" if ( $z == i); _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... my $log = &log((i + $z) / (i - $z)); return _ip2 * $log; } # # asec # # Computes the arc secant asec(z) = acos(1 / z). # sub asec { my ($z) = @_; _divbyzero "asec($z)", $z if ($z == 0); return acos(1 / $z); } # # acsc # # Computes the arc cosecant acsc(z) = asin(1 / z). # sub acsc { my ($z) = @_; _divbyzero "acsc($z)", $z if ($z == 0); return asin(1 / $z); } # # acosec # # Alias for acsc(). # sub acosec { Math::Complex::acsc(@_) } # # acot # # Computes the arc cotangent acot(z) = atan(1 / z) # sub acot { my ($z) = @_; _divbyzero "acot(0)" if $z == 0; return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) unless ref $z; _divbyzero "acot(i)" if ($z - i == 0); _logofzero "acot(-i)" if ($z + i == 0); return atan(1 / $z); } # # acotan # # Alias for acot(). # sub acotan { Math::Complex::acot(@_) } # # cosh # # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. # sub cosh { my ($z) = @_; my $ex; unless (ref $z) { $ex = CORE::exp($z); return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf(); } my ($x, $y) = @{$z->_cartesian}; $ex = CORE::exp($x); my $ex_1 = $ex ? 1 / $ex : Inf(); return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, CORE::sin($y) * ($ex - $ex_1)/2); } # # sinh # # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. # sub sinh { my ($z) = @_; my $ex; unless (ref $z) { return 0 if $z == 0; $ex = CORE::exp($z); return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf(); } my ($x, $y) = @{$z->_cartesian}; my $cy = CORE::cos($y); my $sy = CORE::sin($y); $ex = CORE::exp($x); my $ex_1 = $ex ? 1 / $ex : Inf(); return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, CORE::sin($y) * ($ex + $ex_1)/2); } # # tanh # # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). # sub tanh { my ($z) = @_; my $cz = cosh($z); _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); my $sz = sinh($z); return 1 if $cz == $sz; return -1 if $cz == -$sz; return $sz / $cz; } # # sech # # Computes the hyperbolic secant sech(z) = 1 / cosh(z). # sub sech { my ($z) = @_; my $cz = cosh($z); _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); return 1 / $cz; } # # csch # # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). # sub csch { my ($z) = @_; my $sz = sinh($z); _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); return 1 / $sz; } # # cosech # # Alias for csch(). # sub cosech { Math::Complex::csch(@_) } # # coth # # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). # sub coth { my ($z) = @_; my $sz = sinh($z); _divbyzero "coth($z)", "sinh($z)" if $sz == 0; my $cz = cosh($z); return 1 if $cz == $sz; return -1 if $cz == -$sz; return $cz / $sz; } # # cotanh # # Alias for coth(). # sub cotanh { Math::Complex::coth(@_) } # # acosh # # Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). # sub acosh { my ($z) = @_; unless (ref $z) { $z = cplx($z, 0); } my ($re, $im) = @{$z->_cartesian}; if ($im == 0) { return CORE::log($re + CORE::sqrt($re*$re - 1)) if $re >= 1; return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) if CORE::abs($re) < 1; } my $t = &sqrt($z * $z - 1) + $z; # Try Taylor if looking bad (this usually means that # $z was large negative, therefore the sqrt is really # close to abs(z), summing that with z...) $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) if $t == 0; my $u = &log($t); $u->Im(-$u->Im) if $re < 0 && $im == 0; return $re < 0 ? -$u : $u; } # # asinh # # Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) # sub asinh { my ($z) = @_; unless (ref $z) { my $t = $z + CORE::sqrt($z*$z + 1); return CORE::log($t) if $t; } my $t = &sqrt($z * $z + 1) + $z; # Try Taylor if looking bad (this usually means that # $z was large negative, therefore the sqrt is really # close to abs(z), summing that with z...) $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) if $t == 0; return &log($t); } # # atanh # # Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). # sub atanh { my ($z) = @_; unless (ref $z) { return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; $z = cplx($z, 0); } _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); _logofzero 'atanh(-1)' if (1 + $z == 0); return 0.5 * &log((1 + $z) / (1 - $z)); } # # asech # # Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z). # sub asech { my ($z) = @_; _divbyzero 'asech(0)', "$z" if ($z == 0); return acosh(1 / $z); } # # acsch # # Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z). # sub acsch { my ($z) = @_; _divbyzero 'acsch(0)', $z if ($z == 0); return asinh(1 / $z); } # # acosech # # Alias for acosh(). # sub acosech { Math::Complex::acsch(@_) } # # acoth # # Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). # sub acoth { my ($z) = @_; _divbyzero 'acoth(0)' if ($z == 0); unless (ref $z) { return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; $z = cplx($z, 0); } _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); return &log((1 + $z) / ($z - 1)) / 2; } # # acotanh # # Alias for acot(). # sub acotanh { Math::Complex::acoth(@_) } # # (atan2) # # Compute atan(z1/z2), minding the right quadrant. # sub atan2 { my ($z1, $z2, $inverted) = @_; my ($re1, $im1, $re2, $im2); if ($inverted) { ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); } else { ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); } if ($im1 || $im2) { # In MATLAB the imaginary parts are ignored. # warn "atan2: Imaginary parts ignored"; # http://documents.wolfram.com/mathematica/functions/ArcTan # NOTE: Mathematica ArcTan[x,y] while atan2(y,x) my $s = $z1 * $z1 + $z2 * $z2; _divbyzero("atan2") if $s == 0; my $i = &i; my $r = $z2 + $z1 * $i; return -$i * &log($r / &sqrt( $s )); } return CORE::atan2($re1, $re2); } # # display_format # ->display_format # # Set (get if no argument) the display format for all complex numbers that # don't happen to have overridden it via ->display_format # # When called as an object method, this actually sets the display format for # the current object. # # Valid object formats are 'c' and 'p' for cartesian and polar. The first # letter is used actually, so the type can be fully spelled out for clarity. # sub display_format { my $self = shift; my %display_format = %DISPLAY_FORMAT; if (ref $self) { # Called as an object method if (exists $self->{display_format}) { my %obj = %{$self->{display_format}}; @display_format{keys %obj} = values %obj; } } if (@_ == 1) { $display_format{style} = shift; } else { my %new = @_; @display_format{keys %new} = values %new; } if (ref $self) { # Called as an object method $self->{display_format} = { %display_format }; return wantarray ? %{$self->{display_format}} : $self->{display_format}->{style}; } # Called as a class method %DISPLAY_FORMAT = %display_format; return wantarray ? %DISPLAY_FORMAT : $DISPLAY_FORMAT{style}; } # # (_stringify) # # Show nicely formatted complex number under its cartesian or polar form, # depending on the current display format: # # . If a specific display format has been recorded for this object, use it. # . Otherwise, use the generic current default for all complex numbers, # which is a package global variable. # sub _stringify { my ($z) = shift; my $style = $z->display_format; $style = $DISPLAY_FORMAT{style} unless defined $style; return $z->_stringify_polar if $style =~ /^p/i; return $z->_stringify_cartesian; } # # ->_stringify_cartesian # # Stringify as a cartesian representation 'a+bi'. # sub _stringify_cartesian { my $z = shift; my ($x, $y) = @{$z->_cartesian}; my ($re, $im); my %format = $z->display_format; my $format = $format{format}; if ($x) { if ($x =~ /^NaN[QS]?$/i) { $re = $x; } else { if ($x =~ /^-?\Q$Inf\E$/oi) { $re = $x; } else { $re = defined $format ? sprintf($format, $x) : $x; } } } else { undef $re; } if ($y) { if ($y =~ /^(NaN[QS]?)$/i) { $im = $y; } else { if ($y =~ /^-?\Q$Inf\E$/oi) { $im = $y; } else { $im = defined $format ? sprintf($format, $y) : ($y == 1 ? "" : ($y == -1 ? "-" : $y)); } } $im .= "i"; } else { undef $im; } my $str = $re; if (defined $im) { if ($y < 0) { $str .= $im; } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { $str .= "+" if defined $re; $str .= $im; } } elsif (!defined $re) { $str = "0"; } return $str; } # # ->_stringify_polar # # Stringify as a polar representation '[r,t]'. # sub _stringify_polar { my $z = shift; my ($r, $t) = @{$z->_polar}; my $theta; my %format = $z->display_format; my $format = $format{format}; if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) { $theta = $t; } elsif ($t == pi) { $theta = "pi"; } elsif ($r == 0 || $t == 0) { $theta = defined $format ? sprintf($format, $t) : $t; } return "[$r,$theta]" if defined $theta; # # Try to identify pi/n and friends. # $t -= int(CORE::abs($t) / pi2) * pi2; if ($format{polar_pretty_print} && $t) { my ($a, $b); for $a (2..9) { $b = $t * $a / pi; if ($b =~ /^-?\d+$/) { $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; $theta = "${b}pi/$a"; last; } } } if (defined $format) { $r = sprintf($format, $r); $theta = sprintf($format, $t) unless defined $theta; } else { $theta = $t unless defined $theta; } return "[$r,$theta]"; } sub Inf { return $Inf; } 1; __END__ =pod =head1 NAME Math::Complex - complex numbers and associated mathematical functions =head1 SYNOPSIS use Math::Complex; $z = Math::Complex->make(5, 6); $t = 4 - 3*i + $z; $j = cplxe(1, 2*pi/3); =head1 DESCRIPTION This package lets you create and manipulate complex numbers. By default, I limits itself to real numbers, but an extra C statement brings full complex support, along with a full set of mathematical functions typically associated with and/or extended to complex numbers. If you wonder what complex numbers are, they were invented to be able to solve the following equation: x*x = -1 and by definition, the solution is noted I (engineers use I instead since I usually denotes an intensity, but the name does not matter). The number I is a pure I number. The arithmetics with pure imaginary numbers works just like you would expect it with real numbers... you just have to remember that i*i = -1 so you have: 5i + 7i = i * (5 + 7) = 12i 4i - 3i = i * (4 - 3) = i 4i * 2i = -8 6i / 2i = 3 1 / i = -i Complex numbers are numbers that have both a real part and an imaginary part, and are usually noted: a + bi where C is the I part and C is the I part. The arithmetic with complex numbers is straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules used for real numbers just apply: (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i A graphical representation of complex numbers is possible in a plane (also called the I, but it's really a 2D plane). The number z = a + bi is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a, b). It follows that the addition of two complex numbers is a vectorial addition. Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is unique and reciprocal), a complex number can also be uniquely identified with polar coordinates: [rho, theta] where C is the distance to the origin, and C the angle between the vector and the I axis. There is a notation for this using the exponential form, which is: rho * exp(i * theta) where I is the famous imaginary number introduced above. Conversion between this form and the cartesian form C is immediate: a = rho * cos(theta) b = rho * sin(theta) which is also expressed by this formula: z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) In other words, it's the projection of the vector onto the I and I axes. Mathematicians call I the I or I and I the I of the complex number. The I of C is marked here as C. The polar notation (also known as the trigonometric representation) is much more handy for performing multiplications and divisions of complex numbers, whilst the cartesian notation is better suited for additions and subtractions. Real numbers are on the I axis, and therefore I or I is zero or I. All the common operations that can be performed on a real number have been defined to work on complex numbers as well, and are merely I of the operations defined on real numbers. This means they keep their natural meaning when there is no imaginary part, provided the number is within their definition set. For instance, the C routine which computes the square root of its argument is only defined for non-negative real numbers and yields a non-negative real number (it is an application from B to B). If we allow it to return a complex number, then it can be extended to negative real numbers to become an application from B to B (the set of complex numbers): sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i It can also be extended to be an application from B to B, whilst its restriction to B behaves as defined above by using the following definition: sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) Indeed, a negative real number can be noted C<[x,pi]> (the modulus I is always non-negative, so C<[x,pi]> is really C<-x>, a negative number) and the above definition states that sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i which is exactly what we had defined for negative real numbers above. The C returns only one of the solutions: if you want the both, use the C function. All the common mathematical functions defined on real numbers that are extended to complex numbers share that same property of working I when the imaginary part is zero (otherwise, it would not be called an extension, would it?). A I operation possible on a complex number that is the identity for real numbers is called the I, and is noted with a horizontal bar above the number, or C<~z> here. z = a + bi ~z = a - bi Simple... Now look: z * ~z = (a + bi) * (a - bi) = a*a + b*b We saw that the norm of C was noted C and was defined as the distance to the origin, also known as: rho = abs(z) = sqrt(a*a + b*b) so z * ~z = abs(z) ** 2 If z is a pure real number (i.e. C), then the above yields: a * a = abs(a) ** 2 which is true (C has the regular meaning for real number, i.e. stands for the absolute value). This example explains why the norm of C is noted C: it extends the C function to complex numbers, yet is the regular C we know when the complex number actually has no imaginary part... This justifies I our use of the C notation for the norm. =head1 OPERATIONS Given the following notations: z1 = a + bi = r1 * exp(i * t1) z2 = c + di = r2 * exp(i * t2) z = the following (overloaded) operations are supported on complex numbers: z1 + z2 = (a + c) + i(b + d) z1 - z2 = (a - c) + i(b - d) z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) z1 ** z2 = exp(z2 * log z1) ~z = a - bi abs(z) = r1 = sqrt(a*a + b*b) sqrt(z) = sqrt(r1) * exp(i * t/2) exp(z) = exp(a) * exp(i * b) log(z) = log(r1) + i*t sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order. The definition used for complex arguments of atan2() is -i log((x + iy)/sqrt(x*x+y*y)) Note that atan2(0, 0) is not well-defined. The following extra operations are supported on both real and complex numbers: Re(z) = a Im(z) = b arg(z) = t abs(z) = r cbrt(z) = z ** (1/3) log10(z) = log(z) / log(10) logn(z, n) = log(z) / log(n) tan(z) = sin(z) / cos(z) csc(z) = 1 / sin(z) sec(z) = 1 / cos(z) cot(z) = 1 / tan(z) asin(z) = -i * log(i*z + sqrt(1-z*z)) acos(z) = -i * log(z + i*sqrt(1-z*z)) atan(z) = i/2 * log((i+z) / (i-z)) acsc(z) = asin(1 / z) asec(z) = acos(1 / z) acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) sinh(z) = 1/2 (exp(z) - exp(-z)) cosh(z) = 1/2 (exp(z) + exp(-z)) tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) csch(z) = 1 / sinh(z) sech(z) = 1 / cosh(z) coth(z) = 1 / tanh(z) asinh(z) = log(z + sqrt(z*z+1)) acosh(z) = log(z + sqrt(z*z-1)) atanh(z) = 1/2 * log((1+z) / (1-z)) acsch(z) = asinh(1 / z) asech(z) = acosh(1 / z) acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) I, I, I, I, I, I, I, I, I, I, I, have aliases I, I, I, I, I, I, I, I, I, I, I, respectively. C, C, C, C, C, and C can be used also as mutators. The C returns only one of the solutions: if you want all three, use the C function. The I function is available to compute all the I roots of some complex, where I is a strictly positive integer. There are exactly I such roots, returned as a list. Getting the number mathematicians call C such that: 1 + j + j*j = 0; is a simple matter of writing: $j = ((root(1, 3))[1]; The Ith root for C is given by: (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) You can return the Ith root directly by C, indexing starting from I and ending at I. The I numeric comparison operator, E=E, is also defined. In order to ensure its restriction to real numbers is conform to what you would expect, the comparison is run on the real part of the complex number first, and imaginary parts are compared only when the real parts match. =head1 CREATION To create a complex number, use either: $z = Math::Complex->make(3, 4); $z = cplx(3, 4); if you know the cartesian form of the number, or $z = 3 + 4*i; if you like. To create a number using the polar form, use either: $z = Math::Complex->emake(5, pi/3); $x = cplxe(5, pi/3); instead. The first argument is the modulus, the second is the angle (in radians, the full circle is 2*pi). (Mnemonic: C is used as a notation for complex numbers in the polar form). It is possible to write: $x = cplxe(-3, pi/4); but that will be silently converted into C<[3,-3pi/4]>, since the modulus must be non-negative (it represents the distance to the origin in the complex plane). It is also possible to have a complex number as either argument of the C, C, C, and C: the appropriate component of the argument will be used. $z1 = cplx(-2, 1); $z2 = cplx($z1, 4); The C, C, C, C, and C will also understand a single (string) argument of the forms 2-3i -3i [2,3] [2,-3pi/4] [2] in which case the appropriate cartesian and exponential components will be parsed from the string and used to create new complex numbers. The imaginary component and the theta, respectively, will default to zero. The C, C, C, C, and C will also understand the case of no arguments: this means plain zero or (0, 0). =head1 DISPLAYING When printed, a complex number is usually shown under its cartesian style I, but there are legitimate cases where the polar style I<[r,t]> is more appropriate. The process of converting the complex number into a string that can be displayed is known as I. By calling the class method C and supplying either C<"polar"> or C<"cartesian"> as an argument, you override the default display style, which is C<"cartesian">. Not supplying any argument returns the current settings. This default can be overridden on a per-number basis by calling the C method instead. As before, not supplying any argument returns the current display style for this number. Otherwise whatever you specify will be the new display style for I particular number. For instance: use Math::Complex; Math::Complex::display_format('polar'); $j = (root(1, 3))[1]; print "j = $j\n"; # Prints "j = [1,2pi/3]" $j->display_format('cartesian'); print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" The polar style attempts to emphasize arguments like I (where I is a positive integer and I an integer within [-9, +9]), this is called I. For the reverse of stringifying, see the C and C. =head2 CHANGED IN PERL 5.6 The C class method and the corresponding C object method can now be called using a parameter hash instead of just a one parameter. The old display format style, which can have values C<"cartesian"> or C<"polar">, can be changed using the C<"style"> parameter. $j->display_format(style => "polar"); The one parameter calling convention also still works. $j->display_format("polar"); There are two new display parameters. The first one is C<"format">, which is a sprintf()-style format string to be used for both numeric parts of the complex number(s). The is somewhat system-dependent but most often it corresponds to C<"%.15g">. You can revert to the default by setting the C to C. # the $j from the above example $j->display_format('format' => '%.5f'); print "j = $j\n"; # Prints "j = -0.50000+0.86603i" $j->display_format('format' => undef); print "j = $j\n"; # Prints "j = -0.5+0.86603i" Notice that this affects also the return values of the C methods: in list context the whole parameter hash will be returned, as opposed to only the style parameter value. This is a potential incompatibility with earlier versions if you have been calling the C method in list context. The second new display parameter is C<"polar_pretty_print">, which can be set to true or false, the default being true. See the previous section for what this means. =head1 USAGE Thanks to overloading, the handling of arithmetics with complex numbers is simple and almost transparent. Here are some examples: use Math::Complex; $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 print "j = $j, j**3 = ", $j ** 3, "\n"; print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; $z = -16 + 0*i; # Force it to be a complex print "sqrt($z) = ", sqrt($z), "\n"; $k = exp(i * 2*pi/3); print "$j - $k = ", $j - $k, "\n"; $z->Re(3); # Re, Im, arg, abs, $j->arg(2); # (the last two aka rho, theta) # can be used also as mutators. =head1 CONSTANTS =head2 PI The constant C and some handy multiples of it (pi2, pi4, and pip2 (pi/2) and pip4 (pi/4)) are also available if separately exported: use Math::Complex ':pi'; $third_of_circle = pi2 / 3; =head2 Inf The floating point infinity can be exported as a subroutine Inf(): use Math::Complex qw(Inf sinh); my $AlsoInf = Inf() + 42; my $AnotherInf = sinh(1e42); print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf; Note that the stringified form of infinity varies between platforms: it can be for example any of inf infinity INF 1.#INF or it can be something else. Also note that in some platforms trying to use the infinity in arithmetic operations may result in Perl crashing because using an infinity causes SIGFPE or its moral equivalent to be sent. The way to ignore this is local $SIG{FPE} = sub { }; =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO The division (/) and the following functions log ln log10 logn tan sec csc cot atan asec acsc acot tanh sech csch coth atanh asech acsch acoth cannot be computed for all arguments because that would mean dividing by zero or taking logarithm of zero. These situations cause fatal runtime errors looking like this cot(0): Division by zero. (Because in the definition of cot(0), the divisor sin(0) is 0) Died at ... or atanh(-1): Logarithm of zero. Died at... For the C, C, C, C, C, C, C, C, C, the argument cannot be C<0> (zero). For the logarithmic functions and the C, C, the argument cannot be C<1> (one). For the C, C, the argument cannot be C<-1> (minus one). For the C, C, the argument cannot be C (the imaginary unit). For the C, C, the argument cannot be C<-i> (the negative imaginary unit). For the C, C, C, the argument cannot be I, where I is any integer. atan2(0, 0) is undefined, and if the complex arguments are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0. Note that because we are operating on approximations of real numbers, these errors can happen when merely `too close' to the singularities listed above. =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS The C and C accept both real and complex arguments. When they cannot recognize the arguments they will die with error messages like the following Math::Complex::make: Cannot take real part of ... Math::Complex::make: Cannot take real part of ... Math::Complex::emake: Cannot take rho of ... Math::Complex::emake: Cannot take theta of ... =head1 BUGS Saying C exports many mathematical routines in the caller environment and even overrides some (C, C, C). This is construed as a feature by the Authors, actually... ;-) All routines expect to be given real or complex numbers. Don't attempt to use BigFloat, since Perl has currently no rule to disambiguate a '+' operation (for instance) between two overloaded entities. In Cray UNICOS there is some strange numerical instability that results in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. Whatever it is, it does not manifest itself anywhere else where Perl runs. =head1 SEE ALSO L =head1 AUTHORS Daniel S. Lewart >, Jarkko Hietaniemi >, Raphael Manfredi >, Zefram =head1 LICENSE This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =cut 1; # eof