JFIFC   %# , #&')*)-0-(0%()(C   (((((((((((((((((((((((((((((((((((((((((((((((((((" ,.Fh Ch@ 10D``DBB h4 @dX bD iD ІI$TBB'$"`I)Eb`(m9@0hb&!1114  b` Dh "lTH)TAiN  A" hf%n£!aY4hcC"5J2#Tզ@ #(a`QI+JHB8h@!!!hSMNhC4$11SB!`&2Dc(p*`"XE b!IJ&0C41 b `hL0JHLi1L -XX`ݚb% )*Cp& ! $40)!b䜢hC@D 6JJቨ4B!`b `0@ b`&ё^IÆ LO7dX h@)A "I`6H !L'@ DQ B!Bj4  L@ @hb&%$ D LQ~7ҜtZ&pӘ b `&)F؆` 7DBB&qI:LVF2B1 5iL4$ mj4 @ @ b`0b iS` 14V1l˦I7 @` L&ȒB[lC!FlIY +@!"!%$  HX J00CبDE18! L r2ϳ>Tس:=8Ӓb  & !`) "0$EMSIAL6D$B`&BBX&1C CT4h! @@4 0Yf |,tCE\T}nn` b$1AN&$ &IS`0118` 4  9_^8B14yꞿ3wlK 7 &@ 0@ @ `Ȓ b( +$2DR:]Z3cqcAȴNb11@#@18b`!upyt|z8lZ+]}3:zKcwA9SUU5AJ   2LUp*HR+EUEvF2qIW8)-JYDUQ  b `16!B& n$I9y~yntpX"QE,m[&C44 b ``@  BQ0&:Qud J7*"S-5(J7U@`  b1n.2/| ZrJY]3~ڕyצ1Ͳʬ3}[9NΨWVun}Tc~g6g=Mq6}GKsx b``L!nu"6ڬQ}_4 4IMtSҫ(610 b`],k4r:\_GOn骻q[,C*ͳԖzhUݐ9w L01 L& hQm(4d]nNiF wfG&ܱx*uθIbBʤSnܢaFj(@`8箄Ꝿ&IltgxgɻM%Mږ{z)]vSqUټ& b`0CT 8&`% '** -L/(4$cךRjp.h @1b!  0n7ʮB Kt}UF˞tr\7Jϖ~%Ҹ[!hUqp!&7Č1] *O4צN.Ǽt0!J%S101CC&1 Lh b bey ?fW7Ƨ,ʒ2t}֚m[PzvvF@ʀ  hb @%(#!!bBâM4BF=x Pցdd'YS̷ͬ 118h`bSv\>}Ux/ޝ7UI5h,pܞ^[U9=&v8@I!(XjaS,S3]av(KWP4j` -#ݒ7Jն&W"1t!^0 ! &X2y=yomNz.zVwfKݚж26ϗMa5L0C]q$8EQTl;yj]\U:znT62U f%uLb!  o7Q/{jyϣCJgS[oޮOO>_W6O~oC,2T`44\3zc(B A\cuݛU4컗AK2B6vǷ\n9WXQ,y:Bz` `4 @C&r_'RdxyNu <SQUM+#S⎬7v㦩K]Jy:KX5b`!!)*d 1RYn+έӚKUJX7U3˟EA}lŪe6@@  b b4x2\>|z^WvB{3^S׺Np^kέ㜅VզhW6rw{xz=)@h+ !daYZC.~mQniڲ7|0Qgj_J}l;8Po)Ά>4 @dtsNqОgͷ>ǻ \T`ыfNf7(pu9|]͙c{#(h1 @ @}6yn;*SHI*Bj"9̻&{y]4գ7>Wf~םZ0niMRsTH/NL` @ `/9ywVY-tkZJ~sGCz|z[cV-KX+csSTWu6kK2"2QiM b6y֝^]k׍ʻK=U**MVK2R.ZE9}v6{i1m]jZҌRUJ)De%dR*K~eS>-у$eͮsuκh%lGNl8#~:n5Yߎqf?L'@ @ojȲ*d.ܴn3q$ngլNKbS%{ߓ\qM(zOk=R͕zX_~=hE'J]\YA&]ƣLk4>5tdUFm8ʋ+7T+K-%3oU]kRKV=cNjkCiGY)s󝧂뫟CX=na\^ RgOA5F|-P_ew9jWM;暜Q}rUh;p_>|+ng<%̙uӧ>phss.SE67FH[W+8sc<=3Z_FJ^Mz('.Rǖ=<}<=hr7Z6v"pV-:jS٩}vf2UeYN\K JN*|y.!~O{ k#;1rt݃:>8sVL]*gs*-dY*Wdnb b&@?=1Ms*|ZW3VY.+ӋcSZg EWfgvZNDeSBWʋ$ӟLu?CԎvܚ/\hُR]zu3&UWZRvj^l[֢3u[ةZ2=Ox]wԥΛbyu͝p뚫3UsaVX;I>7~xgpa;_կM5yĔ1dD׳<K}*D&P&@18{N]n)E=Mg_811YGE) "J cMQ]e3>_Q=:f]IzTQS US-izΛ$Iv3Q]]JM$[VT *N5-eBHJO<侴euRVzseOv--m(JƬi`jKڹW+n}1Z^.sLyq9}4/sw@ZH!]M&y،l-nq沯Ets'mi9E: Q"Z 5ֽC^mkV[ʝ>]3n2,#\B `T(U6-N,gF~&[bB^w*<=UÎ+mBePW:IPڪ7䫲anm J0 Pg=iQpڎz\~-kRqXl9]O.w}Ku&kSuHS $BRee:̢r fnYmSE9Hr3PQuVE 6AM "vty|yU.Y!nm4kqB.N4UdF鶫,qLں[e ⒅kYknpwBϓU>^Ѳ+214E8,:"=YվٛG\N{UǭJ1؆( -Rd [ۏͣ1f^6%fF$sB̠YUӲs]0 &\Z\_dL)f{!f7}6_w5SYŵUUYe]=73uԌybv#3]ё+fXx?ί'jĪZ'KZCOmVg ٚ5![omjbїxue ؒuU̔g5ziW:7':]Uˎ:ur;ês솅Dq#$BGVQ}cWQd.ŋZ5yrhgg^1ʎxGo|u?=%[V63fH41ӿFBwwnlӯǵ*vp$FJdi::qӏ^|{sF5skb+b;+ɳǽy9mIAJ1ɚz9j]<+htU!lNZ`tafcʍ4⁳G/LJ|TZ5%TͲBLSd-.ط%ؓ5ˡæRdĉV bc@$::v֋oV\fwtr~.V:2.8n.YX͎hk1.Jvտ}ڸm볧-%\s^Lݾ}fƥ<;9 o-^,/B9T,ųXҬ o,4 hxiӛfR-zlFfR&oSG/G=fl"#o %$4W٫#1e;Y(62+W4:lt#:;1[G3YfzseN8dًI8Oy@ԉ``&!#8Hs3_OFRثRulvth;Ì:dl @TqVR* ˣnsuX4%y:f2h]KƣVi%:f'w?LkU?,iÑIg]B%6aUiUg&>zuƧM_5^^Z役:stNg\Y+6ٞEֹgZγV5vkD-d=y55(&: F%`Ȏ-@ 9}l|dNPGDWmp%܍=mbZFlӺ23jqъuپY|| FxiP+$'*싶M+oEșPBf x8O;)3:!319t5!K kϥ:o 鞖3;=QY٣ܘ0JCM`I5f|֭sb)[b6xe8Ne!Bq2c8&(Nv񺭁TmdB6AI"^OOA(D#4o,i󶞼 ^ϯɽEz{κչ  J2# J0lewn~̚!)N(џLbU9:x}qҲ6m~/LmҘ>F蛖޿q]V FbRF|qV]ب5ltO՜&e\u5N\&\تP ʕ^dKN}!F'3ԌIT-!Ќ\%||&zcy].:yٿ,n㨍vL1I"5I4ЇJ+y_4t[Aݦ>f:i2\2eP۱kqED1g۟NxǫOMJ4uH\EūB ]I!["IHl>GW t0peEN]2_g:nm#7S{qR7.ŲAVL,qhJ A$n,iօ7>]0g3MiKkK^#PJ8@LjVD,kU yz̪|NKυI@.v}5wy}~cLIWw!o )E(JT1RjґW{!#4}g(CD%bJ+WKO+ &3doFtr걤Zabb!ͫ7%ѯךU-Ăj*ÿУTҷ=|<=X[q6*iC"(d'"$- yyTnh-|z]fSn'dZ1Ky} />u_3\8 Nz8~GLP;iHvL@`SM"1`8x`q/mAI}E9qOןơ^r2U`JP,cBkW!$I)d+bܩir+уXJ-)~tc>&ĂVB-K_?z$. h0R)F@9"ʑe>\z\;5P:M9u9ɮsaOz{qҬsq6ȦN@gm ;\$8' #R#%M_28ІU[j,#"˟P=++| g!4n^䪶 i5P$ϮYCc`Wr^010#Њr3$H ۀ29# ?ӯ ,q=ی;G0O,, 4A@83s3o !<5-׼ 1?430D$a ;8cO4 ̲9G&o4 1ͫ?8<3w>9? 6 8E Ǡ~ߙs,< ,/1\O8<:Հn:,ӽDb.4'8+Jr<<9]+rˑ0 <8"CP/ < s c?2<O;x7}000 Á(N5M0ϯFo<Q!w0 # L4Ҏ +1`=LѨAuM 8 @h  Ϊg0[8d_o|n00 8 whhtS/-ŸsC8 0 07o8$ڍ"ʘq{ T2ѱa0sFsrљu[ ?Nz2"8fɒ{Oc1+3vzM|"D:I}KYaLω` 0 G+(+f?)ŖR+}0q@{1'7#:w4VO0 $βէFS4LBer JeN*/ =A1=$l\Ӯ@j.檄kz%eqe^PU콹4x=3` X?Rʺn.Z׍x)y"ř?21l6oW5O䐘eނ͠@{B2y^%kZ*ogxBVW`h9mh]zXX,нP,ۍ44&}=fJ4E6~JC 06}+n'Ui1᠗$ClLE՝)[T@Ub̶&R3[gXPB =J(B41|xs}Px蒲@[5"J۲syo#$;X#L z\,;tEfwҸ,=ěeӽ'O (7=u~*"x(Q$I0Nm5ͬz hEb0?%0+l2ͻXl RH#rA/TmXb̪?>޻|P:}f}Sb*QnW4{5\@9I{;MWjMxs1;1dY~>r[WRlW2 UսKzrIv6G'1gglOrm"(zLfo`Tx0fbhmNW= [c3 $'4jy32`$^vԩWW|[|{TFg4CPaڝ {X6]0[Ö4W`'LqϊJ.,3U[1[v Q!!FuZe$ eQw?ieg]TL-N @X-nqBٸGV'd H- 47O3y=Q ,swwF%"wXMhO{5! p:;K(o;1O6`.9I~hŶͱ]Yqưpmaƾk^'y; S!",`8t侑5qGZw)Ayw/<^?Oz1tӪ($S]n91#T2yJφ |R|3sJ(]U+G{a&Pd>i6ClR|2Ռ7Cgخurڛgs.3uo=p,!5bh-?KM)UzUk81ְ` ZIy6 qJN-ե5ymχ7cl,iX .CR oz⯫y/R褻kPp20%˄c`6HapC[q7C(Dz0DG ϴu{m[˯Ac" i;?vGms$יg,h?(sc}^?Z׼s8&IGhDm?Kosy[r)| Cq{د}4} /{ePE4]s։* -?ۉ붻]:+m'Wum}njj(l*J }mKVT~ 5o|YYLPK,"jC*6i<}}mg*ޏ<2cs|㐓bI/v}Hvw gM$YQm<}}}}ڡ, 5`na%mv}]}UhQۼu,0<2}5uSU[-3lMUQ }d[a-9qLԻƥŻIu<<}g}mD#͓[}3qԗq[\^|+ (ŵP }qqe5=߷ (Bt597=#a*8^ȁ 2y`Åqi}<887w]Գ=xQD\}Dr)XI 1ϻ( cK<u6YqJ|4tu<o0[$-| 4&'=M}R&ʨLs.Uij M\_҂B!wh,o3g]o4Q7u ?o.\o(iˣ&CpLTz7ʙqoyv1 ԄajAĕ]ȘYB1/&aжiv1$J]I1ڂ#y ہ+-AiVmmRYY̺}S*_އ #׭qrBv YR̿XB=kqYH8Dvq%=j1 PUjץ0,#>!Tף,8Ns|i,:$BWpہ0NNʼTrJkY?4@K_oYa @1沩(SgaA4Q6HwF!J`7pVhָe"֬jO>$,JdLTf9BV;(L\ h7 6: /[)+R1.?`2UM|r*Mѫ/-?H@l!M*"% d͖<HbģHo몯H^nTG[-9#%9I"9MԾtd%yhGN Z`˿LJܘ1 3Zޥ0ږ[z hfɎ$X览N7a./m ՖG]8_:)]`9xw(F.&n$6NJ?[^F GYdn΄΋9>z nf`~@lֽL&".qj'1q8hWݎ's@;B ;fdBy|q=S$`RD>]F ig ^%"MHt4SIK+fe Tnf/޳tdy%[1!Jdx'@^PMoxMS{TPfB|^*}'sUC-JA!AFx(i؟.C` \nx<졆|nxYPd(n`/fL#2t>#DũE^?кq OmNkoȚ6Y?7*&-BA0QRj`鋘LϡL61O{˗&T܊TΛ7 q5tfԯ09mKxt\6j0"4x/\ҙ UL}%jXƄ QYgк87d]G#aPJHrCN\xKg 3]Jy1`\` Ә![MͅX\ΖABn %̃rd@fL*tf]>]x*G~|ˀ`1|>;;_`GEqIؔ嚜 o3TrUsqǣĭ`FC1No}~`?52%f o5P  B楩I<$̙G.4v|ͬa,U+)7v1yP&_6WcBa1g$љWx5G!TxHRbL>}UȈ26KNV_OAk-eT~0 ""3›O1Pg(>L<^F,hF㘘ټËlauVGW5$Švչ6b.3N?/4Ow!~& <~0"1rvb Qf0U5Ax=Fo3S1z9f|1/&E(q3dq1&F #(Ua<DM@Af.gI똏fnD$;2?05(B A) >0Kp|~ED6EFZFv癩>Pڥ0 ӛf. Tk3mGVc0Qf;,ƥT`B"ߖ7*s iN*3("U FbqBbZ - ma_\X5 3.(drb;R`@58q@T&bfj\|{Tӹ$4AهB9itbĪہ̮D{ud\%jc5Ɍw,Le"m̠\xꙮkC ʔLD鷕x*D1(~?P& f&3Y1[c`J LzARspa\|t(TWJlKT"z 3 +ɨ80&]>Mg;0Ll&Ll61Z { MRSn(-=:fP& 8]!ryI'U,ynX\ n?sB9$̈́ u6`6/Y3Sd%1)w< 54QO8nYSMd&@k&<[DkcQ>&\ [%N:VA g08AyG淟R4qډswD:AOyDm<*\Mg3zA0c"țDɄf. ,jH#U6;U}1M 83y|kcBk889?Lچpd4L\W 2g&SLue~2-2!¦"Ӗ]:)&m;4bA?0k8d?)}AkV,&E(hڅ۸2S5Aq0F"UbYө䉗JF:6ry.6CMw> b&'5M{P|]T}8_3P,X Bc{A(7g9кӅr(55HDRiS~I:M_Ǐ  ZÕZ-k54ZV3Mg2/̹ڢiYԊD͐c]#6чu>Lv"pAFaJh]Q,MFfܢ&)>@CG(X%ߒhF(m.U?i.q.مw2c('kXIcbZkXD&#lGu g\)KlP#B`P[y}sR(UpAn%MW>fqԳM/|5FOm?ٷbx*ٚ-X9BP16ճ0ԲPP^cuyLF*e Ù­ -Ar8ybf&l$>!WQHQ.TIL ,?y"zmճ65Vq|L_"Sgϸ 72Ϸ#5Rܾb{["R>#9&e0Nf|6s5 ]?3:`"Γm@'gfLyybXq #=7VsE2%ĠG,y,n~"T~ _eXt^Q70ٝA7%ÑAf%3Vr(ij7@{_a_}od橶bdgGGɈlw˜' u.fYRh96i[9!>2p@*1&ELf`B~TM3F᱂\N`J AAH |e0sPJ|1>'L1L t nLQ cqsLUIQu4^a )u; о`vNbJP!1&Œ,.Rݳe(Gb}ޠ06mŒ`Q5ܙ#[`hP 6 cu 36`־& :3>SmxuxNMFdԐ9$G 4;++!>L(bdGRG pgʟ)3cܻ ~e3Hdiѷ)"T??ŋU"aENbw .SP@@_&l*1<8arcj/POܰ!48v ˊ|w3PrՄmCju594"~Q:LA[&-ϊc:f#YQ)="T{ajW><>D8[ǃz ExF6IOb"/"e֜965 &x&c̍h ~X9|K`01gm; 0md<Ӏ*3 >%]%Ӷ>4\AC85LY|@(vu{]:d5c::VzjzF]g.1dM3]bQn* "'6Vӯ28 e? Lu3IcaZ|T؉fm5:gyd9Rq:nǗ0:6ZvsB`G˘Lh8Oèf^Jk깠kMԸ~"nCop&. mS̹p{3b\ML;1|op܍l~_~&7<+\4g a+2 k_ߙ[ S7"ĚU@ѬGP&=7]=(!>cdːa,:~\r?i>ij28̵=<vm<)pc `1CهX õ{0t91 _`'cQf(\ehP" #YA>Q>yzS7Jy 1X Bp8s,v|G";_1+ks7#LZpڐ ?81|+fB\OB8<aMf*ȃϻo~5yֻ$ïb91LA1{xU5") E`+byg<\_lZ3aE c`;O0f,KNDd0XHN3tW3 OlHCaoUܒ&"Pه[2 FZW0'KWOt/ A δ 㹇E5L,JJ6DmZcdtRf w'1h_bc|ith\h/{XWfg`r#v=s<\ĻlkRkaٚţO:[鿿ogʡ<|h1TqNau3.,Y`c! Di3qۙaVh~ˆE<4бWf A{g2rL>8ljocMCAMO ';Q|Tv8&h5nqW IUdO\9P6y<fG&OT|8А&-22fp\tl~4zllCq] L9wB tiX\Fܠo~h?y/~AP*~ OãR(q` SfKN gfE]4hɈ6c Bkܮ3p=; DBAg0? =ˁS|Kt2ci4F3gJpee˪*~qwՐۏa4b1}S55 Cs EbE˸Q#4yCv{L^%XЈN6 ǭª&H*qsWv+gFuAƢy)MfhB2@PC '%}k"Lϑ9"z]BUΝ5@9&5';\>%H;u tۄ8V`zo3{@>'_l6dG+f:;A]BM;@D87"u@r2}t[ ¥4ll&>r!\O6&}n0!=`8'pftؾ=k1Yf(|uOrZn4(cuQɞ /L - T؊ۅ<ZEb*~&vߐ%+Fa*YSFM7/n&d5&i\>0@c"h#h n` `8 >=Ȍ(u`RǑ46`4{&R(H``7 abo"`ݻ5,('7j =5f\ '``g1|L˜"Vi[3HbT1g>`|č米?5_r~IjY 2p=kX0L4jLP-!Pr/gQm37}魻N}Ri`C4ŋ6,]R=ӷL#)(eF'%i&0L| 2UOULjliIP|b:}Bd_]vjvSCWe5$Q0>6!1A "0Q2@a#PqBR$%3?l/;?(g=T3iMm#D =>J~¿h,%_\rB>Q_qSMi3*:t(h{TR|aYR[oϧESFZ5`ܿ07a_8")&])5cbzԯF7KGz(JHP(F3X>?T6ʄJJޞJ dͰp&a)x]R~7NɘY18hHRĝL|2~#갢Sn<ً1ѓr]ٴq'>[\LoQ`צeBTf[ٌxmcgr`_ؾ!ݐ660-EQ  Ɂg@SC^&\z'Q8B= a?)?P:U?N@*>4}BrgX:;\N7jМ QK&ZNܯT6a6oa㸍練0d8E+`rVuhhhD3q=x멯oݙQfg<x?ӦÉV2?=`͟H$DXt`?TEeS'5g !{Aw~O2k'%8?6 1bmxls48>Hx55T[|G"0~{L`KPT4oU1c6|OF. >"De? FasQ^ʬrMne@3`d4tDDn8?2VC+VxHLeV748M* qU?M7& r g.Ѵ'o&\̀]` MqF*D,hA14l"\"@&T.f<r.2)&}0i#Qdƃ&nD3L@|@r"&#ɍs Eړ:cHfvd"G*fA\YB@S\X Fngt&,Yr*E!CDf mbiwd49Аc2uPr%&PCLlw\EP?1BSO(7#(☎B V0h@0SQrfn!kv?uw5LT!E "+2%}eAv`@Wc͒30+26Tc>fn<RT(9ֱO+n&W˦?UDZJAdQ`ZBAq0e*`"㈊Ld0X36fR@, #aJ?a 00GQ B% jfe WώE7iF ӏ(2}1:&e3A:%E]DPT A(DF=YTUm%d EPy<@ k mF^ft *Gs\DmšmAK列N2?gI8.0#%0 Fb. .f(FqV&P:vhtCwb-& ˇ#Lώ&#E!Rp'Og( xXX%,[V`Y LX!65mG],|Y*> i )4wdDs\f44M5Al|J8 f 3ןfyeSl"3]1X̸O+s"saWqR)yTccLCP, ;qh 4}y!IɴEv{9T2EXٚlG&@&W,j 3ǽ@j&zG&bLTno'cƘ<OLx=?(ؙȵʴRZ/R<֝Mq, nTյ$Yk] e`.u'V-w!h cOc4Y61&Rǁ1)4bG ,Cs 3'B@+1bg[Q4‰'˽&, o'"T5=`UvOj?BrC 8C XP ɤ:kȌMԻ1&ogG[@@aQp34_B QP_ hVbb C:c-h.!A ω 81J[ل'&)(ۣ,'X)\A 8D=Bo]7[{1QCP3&#Ez/gܻc~]q`QRf,eT ͤL=5#MC:.1\PT-8w Gan|c"%Y0LMٛ&L rsSd8u+W/Rè@E\\٦զ}1zQ,b~;"k6)F:YWc2TLnjb6ۓ9.><~1,NEn '74o_(*lD+u wӜٕDƼ@G3(e&lQзd@l. ȪjÓlUٔHn!:l"fL9v5hIu ǍL-o7:7EK.crmը௙ u3c]XGȘS2}#XZ?dO)f!ɐAbfG8T3OfpiNrfX)4cN2"F4!ʕL֠]ZŇLɷ%~e3܄E؈a/D>zzc=5V>L[i'b 'C>R#I( eR@9修euaFt`ŊSN]#bqk 3 j75lU*n}jOMWfUT0nf"!%zːc&gڥJ*i؜BV n|@7:0}bf\7M@9@gPМ`i 4j&p1m5?Qfk!ְcd luR>L'м̄&*}?툊怇J 0MfM) NՎs;)rlT=" (?9ɅZul@;%R&}: ^yVԛ# g-@@PRLg94^C>`&\.G7gйUL1 *: QDsAjqDl2-4u7Eox`܌c˼/*'fd*9㱆 D ;da:K2gbeh4{FҡgL |v3 }P ?tz`Ț&&o"{preLB$5fl L6وAn &3za)ϑŴ(ϩɄMQ\ޣ 3>=v~n ԐVPTWLĹnt̛3W=ØuqyYؿp}:O?g'ŷY(vf ,gQ9AL^?1!+n$֢&*`հ3$Ծ &5)\\@:&0E!iS3y7/URA<~"1e0YFNioIB;?Lpl=1V1w0`Nd`$C#O-ϙp!vkZ˹.fn|NɁOBdԽ(݇_-l3i0FԢ7+fLe9*D h;Ob`F1<"ڑح(E`Owֻc(VUlY{slc5UGESowѹ oy0Q{v剷 lsI6 FƖ8cimJIΓ 7TQsQ9F $h1"U/]Ps2+7s73YO|U|ΠS vcB=Tǘ>aۧjN3(côRƣ){Z;_@\P#؜gK=2͸1-qs:"1+*~`Ρ r"6b&mη$j 6>aTPŚ#1`R FD֔My$fI`ʻC3. >aӱ*1%g'i1lJfxjPðvېnk_%8 Q)RY4SLoɧ>lhđ&*&"ϑWj 8f_Xv3#B:;116&@caS0?`1sR37-b!q7Fa+4cE;S&Z3t;rq34)jQAJ!}c]@>`E3w]ҳ/8pÌe\I›, "1!cjTfb[if_i~ߨ4=ndY(L5cGQ ̣!5l=S2w,π-Fk6&wľ͆,UCJgP9cswbPݍ&ǰq0o*`C ȕ cF+/@B˩5fU #62‰(h۩2b`m4xm1V/lZo}VjiT/n 05w2Ʃ7b`<> 5٠%z"wv.n,LYWjfJ3wBm(w@\D|)d=Yqs?=f} s}&W4&Ĵ Cj}34s\m 0 &, &Lm3 % LTʶ.<x>FTLP"u-8 x (@QJy̨ʂT7?1}?n (6u^#>eh@Nnf*I<)aaԛ{}֊c]f{ UGT;,ͦʠyӌr1#nZE标80a+`DT\˘O(ٔa7`N[#6H#[YIU>'͙(M:.e/ONfRk޿> aٿ`G?~!^a£SP)cPD"l& 6ȇ)1t&zn|0dAc#'Calumb 4 ֩L=fݸ2oy.2I$\@=%?.$γc.U' &6yhc4~DžYz<fc@X~è81]K n DRk Ž &QbƣP pэZ:ljX3ʕ?ݎѲ(G` (z(PԅB~`kS6xM,bmwQ_ 6rMp{CdСG՝K cmؓG'ӲTnTM4k#Q{1O\GeN(QbsDO{h:Kihc'\?3(PBgmA)g 9aTq%#8N0m^T\cXQ%…^(/au9羳:o=3 =n-~Q~މs>0f' dΟ?n:cW=vKCiREd]|E9=(faݹ[9d* 8۳ݣeJ0}BKtLdIPGcGTıa+6M/" e'af[:^ 03~z?7*TqG Px{e`Q+yh'*94omJ(1W/Ɠ^+LJӓNJy-_$^kS h&fn!fusB'j9pV!8 0(蹦*9U4Xgc{ZUVӧw=Wf8TXңe\we7D ;>@SZ;VjgqHjP9 z#"bȯpcv)(et+w4gQ ,{ Ži$5EX:m/\ntXG\Frv~,Ԩp5! cL%O*Lx yŦqdGh 7cnSz L mgZl0G\dSݼ.UiVm FVcNH9dעlUe^,.I&Q&] mѝL/賀A5aS4s|CQqpoIH;|e_ -!Rb}/2tu #r@Uy6Tܻ0Phu]Ļٹ_@lrLдt#T1OS76~uwliΧ[L}LLiM9!7_O? IuZuNv,/!P25䷴CrwhcVI *U5ϢDiYLtaUvp}:'{?]fmst' LzMVrMMʮ0uFS naW7Ԃe Fk;B>Ƕ5D7w2&dK~ُƂڴ,;2Z{CX S5Mh?-$JfID£&x,-q#DQO2tj@GI @!Sv.2JvY*d &V`~#=27Z,TrdBCdFW K Tz;x5qTæʙ`;*kHQ&\JyݳKBt fL :|zt^c;`3 +ɀ-V;t)>au?7Xw`GRwAWHSnNeII*pU)ai0i8i9ͧPѥfcXUV6zy4Hg]NJ<-=֪xbS3fYOC. Py֩+kYZylg 9j:D3d\އoipwa6@nbq#\A}#R5Bl p2U]& %QΓ~3TLG]BbIU MӒcl*T&t9c=eC'~:;6x5@M4 [BnդM0I>򫅨VOt525j=wS1 0b L{mkEUm O *c T̸AiD? N;Ӛ`s^ǀ檓N|sPL:6HI?Eޙ'sf2M}'TjhhwL)? 煨 J Nu'䎉 ԅB4NU|)Tm<8B0k{2`i &KCe~Mޚx!%OA!Wk|!;T$S%L;kiTxG ײ4AL&ТJ.#4hmGhZ$4LtUeˡK*r{:s^D\TwPnQ[t\5ee=UG7˞je0GC,T8|P}(lsjhvwdOWgUtr;\DM)eEOHM >Rxs|BM:M}6aFbD eQ1[߽?P 9ke6N|hyD:9jpj6?ڎ-Kz*sDKay %^цAoyK)4nj]ˮ78uXjz5"汲!QQI=75iͳu}Ձ;V*}!TKC8nys]0etPmaS`CT*Tvb:ױ9*g<L0ʧU|!&eaL'϶DM$g53ZLk)#-S'wDcwE{0G;Ii#6?CrnC +Ϟp$puC=2oY4t 4FC9/Q:~'ET\t?T󯺰u8{C3B+'^XdamZZM<:}imް׎D+rKanUi*e"ςZs2潤CsS]sNRζqFHh4asۍaxJG9 ̕"ks7u)ѽLOE>>.suU?&hTUy}T!@& ?%̣| K]yoU#p#ZUDdNl9!R hNNg0[[o&O@p/ݯC3ȦRf+9إM)džA:J7@ˌqOK y]^3cNDѠqkXX~Z*AW,&קk*qglamFtqJ-'B|m>hwk!6!S)yBcW NmUZUIˈ.Ϫj܌~vFG$Ba;fVm:k x]^GN 1t /Tۓ@h+¼rW2gOݗ.Jxl"y%MzE1[uy,s-p,MTo8xʯ k $1Y:ȉ&̨;ÃVߧi dˠ "9BOȧ訸; i]c-{p ԉZ°1gif2nv2ZCW5[Pup|i ԜRʨX}I4w@Mny'K):\全9O%KxA Fn_٪*&i {%.*È*m &gR$Le" .$8OTT\*H:~F_ 5BF1ͱNrk Und*.|sޓ=Ld*6x2 v@)I/S5=%_ACFTثZ.xÒכxfd']%J܈#Ul4:({.|uꦵ'j{a~0r9#U4!apAd@ȣ190&hM_Ē)UUmsM%d 3o8ɵ=k:T*qLwu]h]chʓK9:_ө41{y.n|-@Wgl(:\D4cm:d Ow<_T8biS{d.ڃ(!UߴUMo7LԨ}mp:O: ^5*|MSK~`zSm\T ]& Mq+HTK YQR`s3΋ "'NߚܷunKv2/o㖍`vl&iA:VmE,9zg`̞>G^IwyTШzOM%4&@*O4; ˾*=}Bk?BaoA6 Csns M`Yy,"=S3{qn*'ڵrrՊ||LUHnJC) ve1/-ѣ@U[Uȵb*omx`n.Ӵ>*SLUZ *Ea6L\UR\w{g6Dhk[g)LdeW02BV5U6U,— cG `LOU8}~ K op|4q9(\~_=m7CdxH9eMl*ᕉ1Թa2D(܏TaBTUՄf EPC ?Obu'5Hk8G$y*cCrՅrM9Nyk>GTXdnoh4Xj;]9#YM­2ڲ3*joEARzeh@rküOWwZoU^69)'Xی;kߒcN ]< s'{lp Vi3R[ T`LE^ GS: P L}} (႘Ӫ}AlwEZzev#޳)Ȯq}C{bSֻ;IT}6s]:y)\ֻ{`L;%{zFKO}Uv-oHhQ2һK Y~LeڻPrDMwbby'rcTL$Z\2ǸT+*8Qt8]R)cAsdxDz6CDagXܩvk̦uQsdPqa|2ۏ`V w u6Fzho]m&wtX|>!<]Q1Z\ӡ݀ aȄ[qasUM>XrN ~LJ 0H}&ɨj=ʿı ^_> us{39+Z~%iv#03uO_תUeq| f}eR:,E ۗ.{`U\@ dgM04c6cj R3Xl@{n5X1-fࠉïNg~~wsDR:(rJ"\yŻ_o=ʼnZ*ѻ.4a*1uaouُ$I,)c[F@^ TGR&Mbnc\wMw*vVS6yL8džjvU ԅ@Mvy{D3=rYSkC@V@3QbP!q|Vڎ#Pf2{F2}!pT{M7T{F\L_0[5ZtTgi]97Y.ըfJf,s'D:6Yt}U4q-4cB>+ cmƲpvmh:ZGf32'k#o<'' _Bcd'CM#fp5k,;OV=G3Muj\eԕA-e1 ʬ4l9l)hÏUITk- y޻PŹ}ڸ50yQ'U2O@!T<SF6/H z7?XN3 BS)0-9s!SiTUw.HҚL~)\eT{Fly*.,Qp:gy. h-O`]}1ZPkP t:rXϧ^⏉8CM2c-&,y9MvXމCp8fmJuY,tHS]k:&x`!ۊ`r)lKS».R~~J9iuuވK{лO]W ?"Nh(uBJm췍܀sToKM.Cyho6{`CCvYpv9be0U??D *X~ӡ_4T'"ԤX㪥JjtđIu)w犏aT @{6X|Ml.rGf!V3+UȔ %Z|Ujze0ֹ^1OT>0 %2HX'vN+Ҝ!7'hp8+v.,R=Qѻjxѧ'dMH?HnX\=3AuĻ>^G_m 8\K@XAAk" +YsUt5vi?cLhI_5 <)JC /Ak\6,0;&)s h&q9SKU@^5_,ͱ$&nȷOݷڧ 7u^G89y m _,Rg/pjǘҫu0\?J]#\w"b=G%γX7l8a-[QU}r=B$h MUJLƦGS3@*\"B4E /VnͩNw,**Z[V.p9gpXgյ̧kc)ou7Bh 5U@FJ&,~t7)%37 S@sns)YMtn w4'xisWXa>o%kV}G'TU0vg J~lp*D$&vgkTwU%Yi^!b\xF+' ! 3\:G5iDWhGO*iЫwMwD|qvc*5C-aDjp^k V5 (7kKi7ywYoTʨ,B9rriL]60QR *`mVaY.e1R뾩Yn5c/k{xuﵤhCFjپ冤Vh zPab4^eRbgB 4]+_񓪜SC9[QG:Q`Y+Qw̬ v@ R,^,. 짖W _yDu๲-b>.$ )'}^'. {jWR9hb(6IVh ӬxI6Z1U Nm.ޣ4E@f>Ues-)*3 u=UJna 8:~K M-ܰm̧wd+I*imw Ri&Uh>VysnԳ>"2yNv%Pb:T.a5T=\S({*G^EhZ>G5هع өrU 4XC_Ul8 o5 Vو|uDasuDO%-0n5XgUpK+#2UiR6N 3G uBײa5u9gIN+*7O$H0Tn{qla_4O@RÅkXItEGqpyjihOͭ'>IUQu6,vg)Qc~ùh=Ή*}Wq ~ձ|UEYTqW.-y&Sxl_%in&v_y{oTG#%xy,E==ځ}C -oRHxuk L%昦A(qf|N7%Li-+ j#柕O4a_n!'(o9wK{ UOV絽:wbsAbUq5˟$r uL '*75n MB- /u:܈Xj&QNMyNH0TOUJ U0u[$o__ 9hqftY'J8; ?A2F2\dYtWh^ke*ƅp^j +|+Z>DmH B]Ty,#<=s ֛MٔZHsPF\8TiK˹NӅ:h(H\Jc&tJ}jnlo}CI!::<5\wBQK"3Qp51:eZ=Ät*# [)ܺ֙Jߴ?6hӒTkZ*zu|8GSktN|62f'3FOڵҝSH0ZKnj=ڰr֕!U|`1è?-ph >Jr: ~M`ۼwC%(Nn{ h ht]\0tL|~Knhø.q7D G  jANt#EO.`89跜1isCUkATiSkq#O^L@y2E x',(3 JpM9,Q蟲aC1L dWg{x|;vbkd杈uVaT׫knK ˭h,q&VEPf3RygbP2rjS]G>I"AG&$.ϧ$Yk/r{s4ւO c&5 h[(u!7x*5&89?>wu$2CR5F_[>u*=QΥiH=f.4l@-}#54@ ΉO0 l2?ҝ#0iO̩>. L ~X[`L_iAAx[XbuY8GЪT&gp9X٦:&yh 5%pRG%8&jS&LTXvjyn`{<5x4Â\9kچ4Laa^֜X.M4íf%;`G2~s ƛ;aRWm7 y"b0,hSmggԬ\>X:~kVGftRGyoᕼc|װezER4GUFPě.WX he< Z>NO85L5Uꖵx9amٻE$9 PH7~JmLtJӣZUS*FEauV.9+hȧze&73#^yg 4ˮh"7k {af ?ȉ[tZ<-XTʹ q,YXurr=L#iӺj~fL--jkRDwGkRѧUFe+w/E+ O_ XXQ|韆Dh Uw S=2 X[IRL1a.V"lxXZFWQZ] Ht9:uGV5U1oJ0Ktb:2~v:ջ6;Իv4O5 pfts\78S)fD+y놚A' (դ$2YC*9Tu*bXG \/<P hWejgiemmf<5@u 2Uud4i# dm;03 y/SA@L1-Uh0sGDse:CYV͵̭p;Rqꁹ->#Ś)wn(X!^UfL.ȧxx*7Cx,%?*|T Ҥ zͻFJM5?򫦣ˀp>{aЅyzMZbmn4 QʂZV; pKNTr@*bJgFDd7Soxuf>eb 9`\ZM;; 1.NCCs>KXiLW=G1g-q Ku[<|a'U9fF){DU*ݝg+HeJdazDiZu1P /GCD=ե{G%"oCJm*!B."J D>J"ᜅO8ےy͟{@~C R\rS=!0ѧK#yT!(tE"hF$y J.*X\1{ySjATZAy*7,I-p/ ȱkH^U 0<5?6g.7,'{]?!°檃!c/uLko#]"3թSi{8F)u6{QRrjh^e`mQ.k nBZ.Сu wcoVm4+ԫj}793 wz|,;3!'a\4+}X OC:V: v&ʐܚj2$ƫ 75Nmi"K}eLC |fD?LZ DHQ-YLA t2tj81br`yp٢d*9pNLɎmAeUUmFSk9D,Vm+vMN +߽hsC~jMu f^7%xSkO|K`&[%G 25 pH*:xOUP 2ElЎרּ`AzAne%By&O2N~JfsЧ*urJk*}"O>ES9,8;zhUs-$Z*\ ᒢw"3Nmi.D[*jUBրT8wM#Q‹]}HzK]rWf^v4:j[}\5ge7M; ʁN\f2|YaZLĪJ5y$E9 a);҅[kKwFs|tXO>"%od.wXi TV+Y= YI瓳w*.اR=5V u DHIMl&G޽s3~S XpZ,N3.+NCϢ6)TkUCK/y[~ɞhb*Y!֓:}\;OTЈUܟe?Hȷ3AS0 OHd8c^e/+zK]N*0}BDDfh ҷ7u0Ч!5i9gT}hUˋTeg)T?#x,h$xD4MHj]hBT M~ z7Jm':[96K ;o-Ӝa-)BfM'5W(;iWR4*Zs\YեUeGR9*g!y5DqNx}{MZS{IM7G$Ԟ8Vlߛ5V#JSPĿLp22X?mLx7fsM&%vJMߝVq3&"u+i<\$'^cg-@緸<x[:5 i>iЧa̔Ǵ) ei.:+U:cȦ֋DѪh>iL}8N}\ BVΑ$!s44^hwW>:xpY[gPp:*ױ||y[we4d4ٜ±sM9@Jz$cPee>nMSԂn\Lڊ/S57ky-s ADn 57}`.7-J^x)eArW,۫mVHUi,EKDTWf;ܘ@b< @ve`m';Xu:02޷{[PTe@$$4[jqGhy'g@QRx,> O&BgdӦ$U,)؆9 f(*f?־\ڔTMʡZ|0V0]:A5 ǻNjnaSΙi'h26Vo5I3dpH' 쎬*K^ZǫM!6e 2FɏU(Xch'-e`0SшżDesFt \52䫋*} >)o\Wm)0ŷyD41akUK'MVّs'!S\tE[F\&b2Lg iJ{p橐Y颖FSFDt 0N!>yPi) j0P (TELW%  OB{u<0oJ״Nf+#%a⒨Pm4¹M0aC۟А_wUUgaw, 4wE q g$BV;eӪҗi晢J*)t'876x`8uL1˄B$nOC^ Ѱ` ^5.)o/erlRۏtn3oBegTc̷{1ZdWg*WԈ FTo?!Ҭ]0px*,j2SCT+E0%9‡bwaSӼCrsm0sG<UҘB9ܴ6ho!&!UC/e[=*UamVEa`p۷zEIM֞+TtpX8yLaJQr]\OT0 peCDw-k{߂Ԇ* fn0حŶePi{h9L&؀ByVSlpJq98[19*!Uwӵf,R mv3 AY -%i)UTCa4dcc{ydZ8\UnU>O9?v7k!kw]!aiT{ƖP[K|]TYXxzsLT2=.e=Z\;v9 Oc]rW^ ΩR;PLIsX^*-k2Ui1%R@˪uWI]PڦRH'1>OӚCȏ /rQq,cSjwIғbpQ$[O9se; ӣ[ao^hP%Fj'?%/|*FnwWt=>LZ(妨TyVLNl>.ᕏ;CMZTAkcf]QQn傘3 ohdKO|rXJ]Iܴ 8Z+\Vl/a, ³bIWɐ\3GhEmrU|DuԢiRBmUtmrjԫW1H](˻q.s_{ɓ0u4Tj?OfA:a&_&\<=Pi0{5*Lx^4oq: xUuwM@I\Fқ1iz%Ps olUsbӏSM9AT/ʂq%RDStt鳆 ]} }ZdIaM"JaW`gtF3$Ð9x+̆Ɠ@ˉJp,6Qu>]Sh#Lp  UTS#7yP&zǗX9.VsG4LTmHnAE0HP̭knp6p*w901qE5Bvlvj3Q2\z8L!'9+F߳ly'CQwݪ'޺X;iOS\l v-Yn!uXhiϚb|d%bu'2x&ccyJ-aOjwU ;)9BJ*fLseP4fn/U-dG ƈlysR_=*¹5o$8jT#^J{x5CڲJ *MDD:SD+Sp W{U3s'䯜<x!59[7ИCEVRᓪ[ӢX3> 9o)/]/" M`qچqopS\hQwo,Ȫnm~JSdnNtHY57_|Sʬ{rΪH1$+ʛYCFaSi/rMw77NeuFF\uR 1QO-9!9ʧLn'5S: uTE&G&T%ZR9yu'HPiקCZC ȂE;6-_s-ks `Q)6!KZ\yM8-b 4fߺw,Zv؍&Gka WFBteb[Ҍ@sXb7`~(" qqOڌ{@sWw=[k XSsia^O-7:}REĽ%֋bMXGT N\wqf_lh ~zdW 35cNH^- m~^J%Li U*=h*99 dNי m'4 =^ . gU,})H-2=\qvQBiܲ-TNSk槌5jA`v] ƔSl\nƗD Dp˞cU:&Gsfc0ċ[2+[ leUstO0+Mw,M9җOY~Ik,|k UAg*ė.W,M  ]jaҜrȭNU= W$2FP8H,8L;J" M~92~RhoO"2P a0Y!b ơӉt*FNe[48Sʁ#00!„uN!B%JjNS` fm<[L X]u6=murq ) HCŒuV?wݴz*2tM*Tis=ѥ1HSܖDo(yOsH*o1O(CLӜ-v{ˍ̢skU:z+`G$O g/?Z5Maf^0o v̑™d1Ls I|,[%ZrWDJ*خ.>ISME6sT%V͍ UIU5c龠]nssa eisne9w'D 璥y!N;NkF\]uE"lY%1!;@Fn赘9jNV$"5:c)d+FY&gT~#%Vg+[ {<ˉ4JB6ۡe0 #67'i"sa$oz-vy8ndYRyT4 ?ֹ/oSV>U8e &2s޷-p,NAnV ՍCy2skþisx ϼSZ2o S\`<t9"I俁Nvd֟MJFن>*R Sj Zŧz@]Y^wPYZO9ALr~MYsT(Ѷe5. X~*8+-CSih]#H,*=֪n-R4PsGBTE=i'(Md2Sv:mҟ{@DCT`ys*d3*38JwB9'l/v* WpƥS~jwCvVzQEPlrofyFI5<&Qu٫S\Ot#j"'gJZfUzuTkK}+_^ jnq7wS:bGIW&O%yuBC( ؎!U(L vRӞQSgRK%We4ܮlQ'V3r` M,SN5`^ MpR'`*TJ\RXzTMVΪ-<{ȈJim뾉棄{f曊#\kǂJ%BoEwR匩;Uk|r@iV ''Z-'#0eIg;U'dNÇ!hPUFj])Nb&TOlL> V]᧽,8mVĹT8+XִHh:'2m uAµRT*WRz&419tKP8dUVXF7yhGvy/]R(aB eU"ntLl:k}a4Ʃ97~ =IWtF\NM+To$é7@T$ocZ eW]Nn5淘iXBo&HE{JJEك\i,>6uH) ND&} r^S_&*Gk訷wE,gz 7xEu "M*Y OIr*`yU5r^TAQP*+Xp 몴oBuѣOMU570莫z,嘒\5 _CA8g$3PcJ!90V"s`}|2M[f p9YUpYF\Z/ԫ{9J;UYCZ9v7gOk9ͤ*oI̪o:j}1u^L]MډT=}ٜh~r͒ʬUJu@2{MIw sn*,IW0vxO+HtUM:cD2s䍆hr4ө5\"~ix鰦SW!9R)ٷg&)T{LL*$#;lz|Ka{KQ{Y=Rxie}Bc n2X иsrVku1~j)\w! 8rꯦ3sHTa>IvF״r5wODi <&4 S[̑MBtԩb+:QȕBduqU ^o//lt+zL;,ް=NY"%E)FHx&rN 2U M-m2fJLBf LtswŎ ijUo;MÒ0zQĨ;;D^rr_(duty-}Ӓjb~ٽZfa uE2=9F>J/en|?p$Z69;ܿ5%O}Jgx9qpRz]a>jCi>ͪKG;+°&ꆫZQ@dUVdi)Akp{ ENо.l`)W) %hMb~ xvU٧~k E$^NlIth1NkɸTs6RՍD4*nžpN&DHPEc*7xE1D(vFS*Ԩ[żAAJO)>2d?OOvz6~jj2Y rw\RG{!ba-=OagQy"XSs#+v?6rN ouT5c4V7*'s)ﵤԞM9s0uIR$~0LFY}U;iGXU:#2:"DTd*dR{8\Ce \Z b~yަ~mGxћ] ufb}nG%@ BNNl#]5S+D禊Ri><>f\^zrMhh:(VR$ǂ'6jaVUDGUwltU;E7x-6E4Vtk#6SHjR.DgR}:&Ϣ;Ng%15n7\(maiញԞM@t7{ \;C^HB2kS97 fBe+5G2WխRi.{Qh=G0 ,‘vAN$:W35W7U#z쪔Lw__:d*] O%~Sp5^[bhlQs2/)z;5iBq.Ъ}Xݐ7؆7VT, Io8}GnTZ> hXpXv统2TF4hiS{-tX|S4ƆC%jЂ湠>J@@X;6 _4>US6YFY咎0Sja$O##$ /4W4\Nj)r@N e8l+Mkipo~d'5{ajw^9m&M♘3bknYN/x,FWv޺WeaSRc0%7uXLs[L%f|4!n)wFeTQֶe'G u(ӧ<ƪu3LjKIbZp 0oi>ebnT(!4 U*m8 K2Dv%:Xz6.rprn'z.h-JɍXی9> LZ%awj# m26l'DFK٢Uz4m> Ana ھ|+轌&g.i'[ ^Is# LjeW3B&Ys'ՍO N i-2GEA tR⃏vSpd+<G=CSi6*r]6V|%Xs)-M7`l] a&e;CkOC#AYiXk 89љ j NB;=.yTR,7{\rv(U#019?-$NS0=ػ{f::AkI 0|D61.:}3rM|D˺ǒrBU|"}DڜUZ+u3+w=C -Dvnlޙ*e$4ݪ4(lg,NY >8y.-mrjpvbvJC$*gCaC(Or2`Ach&.U{xf6X;a,Bu?X7$O8Uq>ʙ u`Ԯs .7. $stnvpgM<􅀾7{+}]֗d2uh_Vv%E&Lu32lXaMsT7o{IwlߖʂXSgx0Ϻ83PܜUkR~G J\iʣ"|s>AT3=>JȊtۉ [FϚ̔GM}(rA \sC]-eaj8Sk^-QB%5 fsu%]"NjRITxl9,}FcWg׃roŰ_.iuNU{&-N?못OF3F&i4UټMdHtU sȬ%}rjmQ%B*(PBjjZVHżOD:W8s{Wd2EUnL)%6Ub,Y==9'ɐtld\!P֖˓qL!hAdN nmV2= ִ 3 Vnג Dq#T{aꂵ BÚ3eSWxM祖תv 3d-B. Xa;CmXSaUa*yM I=Zݮns|FjDfs@?UfYP^mSLU;mpӲ %5?Ui!a9Z׺ R֑~G)X"ThwsR=Ld7K@]a:g%b(U^915 A'xm$|kZ^i } sN{r懚U reZd4 tZl(hOU0O"4Ҫwµ̔@s|Tҏ{: koV!3r&ZnU}Wd}u.qz#Q !4!s@~~UЧv}Ou#;_"֛ޑ桽Uܙ|kN¯sT #Ԉ]J%=vTe S&9f,Pky1Z r6$?6)%Fi=Rw& L1؆C'4.h0>h_dSB&sxjNܼhahC[5T\Cs|M'-|wfL/7UPjI?W4*HwQĵǝ:UZoHt41 } wB%ak4`v T4f9ʕa9}wBZ2V:$5EbL>tO>˧jkʕAQw?%<_3"LB=#Ȧ,{f]$;kxО\:Cs#=`?]NkHeyhi҃2VB r\i<7FIĺteZhRXU.ͱ)aMa=&ӱ^շ=ӏZJqZWx&TU4DTЪjMKWiWsD(ŚIUAȝ=L..cs/Ɨ݀g'e&:>9oX4.n;pcSt-DHF[7 VW\Z4^X& m h@JWS(_4{6%bnCÚzrXVRa{X*"X=1 d^2(ves̯֗&}j=א⪁.>U80IgHT]}6A٠Z e;ӕZE:O8TϮ;FliCϼZgW mrźOS-ہn碝]TyܧLWqƆ3h>j/ 'bg,=[LǠޛBz)D<5G0}j̀B{H>\JjQUhTTi~ .mQ]u<7;Oo3)w\-FJ g`ZoD)x)9#s.i$w^a9X߆oHj6v\:Ueg7LFp/n\6g}jRCi#ԕ x,3s(ViNf*Ҡ*E혒R%FkLֹn nR):]ҪDCQM-yJ!qCp#CITm[!ScZchvjv75O;WeN|әMIn'{jpdHdQ.YAavlz Wn:'8#>ΛUJ֍tySCfnW6T#)we@(-i@V_ ?6P7 | ķyftx {FJv,sbp? #.5 R/5%4Gf8wBKxMzmNצT.oߪkq M8OZ_)~OK?/~[R⭯_U?]OS<U[E7˹t*r }\= xk+Ѷd VNhZNIxfۂk- sc< jՇKG4h:Tzʺ]tD>aO5lMk/!T3ƎMD0uw5ID*uYXCr(3iSwy9pQ_JNFEnb&2u]>jKFlgihEcYלx.h=Pc]*uNWJH+{L9/9*X~j`溵7̥N:vs)4O3_ُ5]ի'+O%rQLsWeL9'"B| 4 jA @6y*[ʏ n+qWe)c\k9gaSAѸj` <̗@3UO<; N qDCG4uz5/ShQPTSOQL`J>HY:\VEd tVΪ DL(CvMkG=Sapzc C mV6&zKsMt8N})i§!P:sDv^V'kwZgMT}'3HJ7QnP" zJTY2O%Ul @ ,c:mZT fB##`ZuPŴQt0BR:Xw @,fQć8>< f"Y49&fgeU~5^]:e`7':u,S\Y[1ⷕ(5j? |G#.|gzefx8ukB?i|X:#A([:FY;1 j-ϒ,{-O'-P3£e'Q06-ZG%IkTꝘ[[S[w3fٵ)B jhh@#cJM*T䝢MJi~i |3& תcZ4().ˬ*iS>P4ʡ2<¤׹+| .m@AM2ܑ;2Pa -Lw.+0!krK[iڴd}L vТgEKMU vasyƂ:ibiu\C1qUjƊW8{IO ݖQµ=:/@:Eu'f#U DʬᄤrzØ_uW[!zUPQ2m%vχ[cZτB2[ݟig4l[MZ [Fgލ ˸Jϓ^#{?U$1RŗU+L E%4{QŞuV=h{E5 EBSD>aǪ:.ĶTve4vB湁j4RUèR:UxWh>^4k @<9JFD#/0 rThv@)Z<iDɘPB2nav=3z_U|0U.l6Mit}5yoT;2?D;63{;ٍX:Peʥ0Z֋O*0>;]Й__CtE>s`\@N*q2F6hJK ^\ײ59(kNcz*"sr~ Ɩ "Tq[>}"|!n? ^Z]2|jW^+FJ(^ժߺj|@~[Y nqG^_ .+?g:Q؃zwRvD3qP~mLj+UDi4ieg:ފ"ȡ =QԔ@lm0S"v#Ѩ]Tc G*g'?S5s,4 C pOuMaΌ;\c]6MNwBJզXNuЅu,{90@>6㩕O Q[aT ->K?(#jM+z}nޡNm-<|dJ)^2\uL'*:Ҏ)ky(wTtxX_ItOJ8*cʂu+N-{rPA6i $CBn`p2U,F\\^2sAŎu>aqշ8wxTj ԘVsYEvM[t(EQ71Qy-E^S02Oe}ۺ5k=l%3ۢk5脑Fa= qtQ&;HC~%wGl>Hf5*3n~'r#[S#p02ۊl{@'(!f:#gʔwBO0SXV[fRZ%> L;NSfZW~ZJq4pqO5Zl+ Zk:m#qʻJ9BsI1FX snXogU!JvA(ӞIB+w6=T:XG=y\; R(s1f<=2@Ts](/P 6l;P5rR,LYV״ N4[4tN:X29UUN.}E,7>V1f%We,óy^:'CD a9>IτriK HFYl-uԴǩ 6J' Mͣc!=[̑Aˎy,vy#vR$Ss^L(ex{>6TSo)nYڭvu <[ .K~uG[y4%Ti܋2VG S堟 MG{sx;Y+kD OԢ2)ۄxڏQ.UZg,1('8eVX`KNzme[gS3MWyPUKtWgϥJ~ 17T^`d 'xRbI(=:nrpmo/Wdjk 7ef՝S]|DmV4R O4V)T/K9B5hѩikgO5%Nxy]Xcc*K4E܁i"-/$7lȢ@Q(#]|zq,daQ]Zg&ʻƏNXmPzT Q\HBm>(*7_, niGTiyx#De@MdO܁sO"@UO n#YAVoS^oǺy=dmi=q;SLWhewO|dn7mi*$ !5vJ^OiVh> lfuLIkD\xZ#6Hٸiin B^:L8OĆtFѭMq23T+==Jcԩ[ﻗU|p^J޿L/ɡ2{xA{gf@EG0\>9a˪K:Y#FӔs+-kE>\â8rz#D̦Sr\6́Xwq H-czϨTi>Jn\*j%sTܱ}E>J!Jķgc4Rö=IOe\JOY *?YXe?Sm ŸQ#O8o uHBwOG;=p SE6ZV'Z7ڿ̫r[*frD5+:ֹ*6l:x'9O;yu ?VUJUjS1nV5۷wg?lj0NDѬ#pU=Gj٨FBZrMAuC4Ji$D\Ni}z-T65ZV2*2+a麩68QiVgQ>"sRk"AL&*Ew֤s@:V xF$3 lA. hԮѪk /SMJG)O3(z)_$S7JJvO%g\@lڻLN}oq޳z}~~TfSNKS8"&ssP`cIB\G23Nhx!E[ta ,~6ia֕ڮ`jğl=iPlt~OɅ)J gfkS䫙x~}'dZ ݵnPbwڬKNGW0Sƒp,5Kvb^@BgogvӓSmw5jZUxty*bicXV_SCZ^~kxOwz%ժa&qmG谴i vchS mJv> -Leτlے_iĠe:簎FY N~W1q2VWa^#I޷?'o=m]vdB#ll$aooX'=<^ݟ߳ǧ/Oُ,jL=[ڟ)TK/\Q=/M]9 'UN&閫g JۿمʋUTuW0拭nj~A>V>ϟT)%4jUnr@,q2LftB 2d45'SkA5:ըiG)P>^)nwU  >4r $ ٔYk {Y8 sd7.J؟5E ]z#P8z!fT _4l)ԣj+jVJNBJrMRRj:tg/#%%wTP*V$P੘jWsF[v*3Uqg5T2ghpp*t5 WFU].m60]9O%ӻ8&sXvW8eĪ6ʎoC4V AD%T' ȢP7.kPw6Wl ܲV({a䩙` gَ~y>K5_F}@'ŧ}Kyo-?]OG'/Ysf>c|eLϑ> !7~  q脲\isSu> 0_B}E.[9gD.)Á̎$KLiR۞qJd^hV'*o$2%`"S Vj:ݍQCdeqdV;5jX[oSs΍`_Gn7hG캎s 7FĈapwL6AiT3!xI˒kČh OǾ|SqfPs DӁb!kD<q4؉k>W"F7_tQ0Q i꣢ᖪG"@o!o|ܚ#5],"Lpea>zɥj|ef4֎gԍ(F']MOoK]d inmȐ &юMyq@Ore_P, wzY&NtOUjS(CC"ouF\ Ag?(>4V z"SG4LS fs觢>/V%ًXnN+ RkT!W͖Q1]>O F(XoKmi~JFl:l"u m-k:h4Ph`6yf 2uD-LDSIaez.ਚtYhAKg%9ׯD5ѦFڬwB pGX_e//o;4^}܂VKEMRM,~v5=JƉ)}V^t2sӮjeTL.`,5Bg4doa*l}Gg2-:Ӓ&T8ŭ*t)Nt\ch戹nNJ '0z-lوL}.tG⩹|&dBu OA [q=%bg5 2!S{s69Ǫi%FQM}` *a c<pz S l:eRC$jUkEk8^܎[FpCVWihϚi FO{5s_ZZr7K\~m01K/`6EW@ EHwq;zpS2PKt(憋aX'~QQ%S9&Fg%sA4ӈUrnPV'V˧E!s]vL6BqP T6YQmkd=3i{X@Я{=eTeBr0+~Ti> d>m9I^!-?4j1úQ"mKX[mvk6 Dw3g }"~p&h6WqfU!i1: ǩnp[t`ٟrhsn-AZ*:´R.k]uIXnZUk3P{k6C:,V-ӺQH:tҦA7waaXvqqT60 Tk~4#":S,jù~F]7KXnqs`&"KXJ)ucg/P(Cdz`z`/͞MT1~s]/@r *-xcF'w% 5kC1;E@_Z@p!YW.yT:>a,U">%aulp8jqyu$Th~9*ȯLwEڎ=#[B~c jsV25C5$I/FK9xXa_ C搏Y2YHk k񚅏yL!QbX ;)TɹZNPĹjZr̦3ؓwąs:N9@Bn9Ŭs.M=o ]e\h4+=U3P(N e"MFl:,ڀO9 =76QPB!Fzt^=G jiw=!s|=NK IvxRcVKꏪ*Ylkn#6Pe&9uVs{܏Dw ̂{.XOrtw%OxSۙ'w^{NcT67˞9,!zӛKb|SiXB32Ng5V/cɸ]5iZvv/l'Nw M㫑mџuW4Ѹ'H@TWkv7R<KLKxHXw5ָ"i .]ƦsO5Ru_5GT0{1憐-vl(*Ttb)0xpiNPwPThiC|s)=f765x'8O-\ A9ce4xf)aȻX*)9SCEsRI$a'`^ݽj*1GcrUmqZrbiT47gjxl#UVT0C8Ӣ5 Ou{9rٮ4r*6I樄Ջz#IYQR ҡz=C9h门=q9 KaVeMt$ꛃ5#!apo5*ln5nchx˸}+K .szeU?86!cs^C K|psnnm*2eȾ26xFkgT hAiU1vIyק*x%# c(SvB1)j+EFWyW{g/dvBW*Y^iվ[)eT*;aoGs.qxqm-nz.4o:?xZsEUs5nOS^hQ tO*i0N(cIy'c@ آS<W#SPMny#5}ymw~Y*Ns.q19Q b|"dJZ=Hl5(}AN=HGc̹(u9M%*LiRDs cJ@{]@Wg*T)CM3G9&ϦMᎰ993:Pv"Bu0Ak9d`Y iR1ڂ}Ȋ̔D;1⭈s/oUw@ڔ\eBF8UB'ZySk|O Kď }IO]cdm:-T"9&^?Tlq0JnAv)g+m3ncU7|>ypmpSS+JohmkG Y5=Z14x("bUJUh+]T6x-dHkd4%Z.r)Xu2S h)7UzSsog7vzmHTm,> `4zXc5; lxNȠ!"%ǒrUS Xr%,%?[ 2~}-Cռ붅Vs`94N~g۱,6Pj4l.)9aRR(Z@Ca|@U<{"v 182*x8;w~yKOXSd\GQ)6VjԼc\s1RF}sAUw2+X37ѫU5hOd| uR`-3/F7 | Zb*ꅃ,iQBpU W yUl ;lzNUoe%¦q0n2h'\A iq^=BaG v=9k@U:' (b\cR'l+VKU!BQɡVw ~+TӤ7sUDt' Qq4.\1cZp194v"'N֟%OsV6:䱔ǫNg0<,}cy^is`8qb0Ŕ!#%P\ ṖRQf[7㘔ݐdl!T 8u`PB}z/7ʄju9l5ͧV p!qƣ" A&faL$&ytB'eM!"}HQjJ%\٪D"!{dj)5ֺ+vPg-[SuA n6g$pޅvk!ȃ$ϬK6{ksY(QȊm^s;ޘXjK\Rܲ@`1M4)]HAI$=*WYRC+c~}Uz>u_lмz4=c'g_~T._ @!ڷa@"U<^z_~~/@*0G~iF\n_?K_Ex$ ZUY>緈w~X\~z+^6#7~z5z]M0dܭhOAՍ_櫽K/1A .JT^z'Hѷ~VЊGp\Ki>?Uz\"EJIRz1as~'Mz>3юo ryBw6?1 >"[NE_/KYCRJ~?/1;r߸&ehk1;r)*ܗа oWԌ}.\r=JE~RT}ULFW[lsbp&low._EJr+֥~ z?c0{.RV&*[^(Korn>w kftbʑ??g2J5^*TQ%z+ֽ.z GzxQzo_ 4a*fg8éf2#wT|Ns>m!GЊٷϪ*GV R>Wj쎫Uo7/>WtQ]4??rEܹr2C>RpޜD:Bݦfrs2J5ϭJ^%7j.nja$8QF; +fh #>cLEޅ6鸍a ?螧JeIHM+ٔj`b*tB`gHpZ <²MvE87ԇii7gңY8cb2d+Xß iGv} 53m@Cu~/YhXq;???bjU?NvVyG3N& mVsTJ2u>gѝNNs؈<,U1(*yNDU8NI\.j3 OF&my+oqڑݛ@|5;F6mmχգf=JYcxiP.+,E+vlWE:qU3<>*e.Gac/߻ .^ڥC͌?'藔T"yϜN2m֝Oah6W^"9!Ҫ{2y%L"c/@ s JqnqҪ8.Pi)J.eB%qiҖ2=lXoy!Jvmy4\?O?Lyf_&+i9gn!T ,]$ZXtw 4vN_RU<`q63TT*@ͭ2>=?賘YrKhGC yC;D"ݮ3\4Yt!kEt4D*Ǣmlf!H2ҾOmW3Lh7+;z=L:̱حFf}fplhHW(Rp=L`Oa2vوe(  >|eN9)%Snoq}״"=&]0*ovK;Lg̳rwmԽ[]]"hT[Sa|%{bDlıF!)vy/>6t32j#+LmZ=c&F.[9vR&p`U [x8579;s1Q)q803cb.7n|SfmyBHIv?0PusNjq8bQC/2Q<\7=sn[+5ۙrQ:tvE2}c=೩Z_/IkYQ0ޥ⧺tY,c5<J4jzjp0į< 6oLx,E\;\y0#U3Xf2:/?ybs"@W5 -BPȘ$;P)pep+-@E ۱h ]616_,*s0}MojDbKTP/RlN!8rNEXS }}u,u7^w/>#a-x0z DG&_hX`AaP+؋|G!gh;AWAn&sKPҍq*%q:ypzvs@Ydv b\S?8Gt,ra g#TBcؼkOc˯HrIGf#LLJd,N<gTBsWCA0ےqX_?y1|\3PZg?f9\yGtCL6q:',& -ܼ{pmy{\ARk<^Sľ(HK-qRg107R> IЋ^[+\שjHkIot@-⧴7V,*9 R\UyTVuaBbƿ1 dQ`v= @WX3RSٙAkXZ~IZ*4a.iC6T,wlJnGDKu.j+FRlg3r;.mSyx{WgQ*Yt{1op0/b3M>YMj:-ffA3 p#_qa!-kCSLxyByn#Ek~. ⏴ ֈ RnOyxM w͌0ΰ[ܭB%ׂ__B&x..lDJDZh[l +5F:x;K+ʲ\yW_@?ISo[i<ՀܤWvFe? جck-وj([ݿf06]I/]dUT&8/4/_3+2GRj*AM O9bur*),% o}L20~5L}(~xِ!8l܋ßxfʍbt5ůKK=ԼjnmdDϢT3ݧDmLΑlMu2W*0Dqc%a" iEi¸Ut0A/vcEyx@} *ΪQ^ﳬWsbdNC=EFf5xmoȔCWib(4ЧZ[փ0)FA+t>ʽyN1lƯ>0x8gAl+lA2FI=C(3G1S48?쳵 1!g-j7wnT,rlN u㙀#_ beĪ`e-?t;xoq^[7y*srnR13kOeG ەKsDG0TgIm&"*.|x]y{҅즾"&X :F Z;/ZVrusx/%zwV[{5^E0PTo]{]|LLM  חS  6(~g1*ҹpmE _SpZ{և-5 ¿ܯ; d9Έk$i TR&~ȣCL;1u ݹv`! \c~%{u}1^2͐5VƢKuMJ)PցcE bX_%3^<ŠeQniGyJW_ΊbcgCg'Ɇ8\UJpz,C/ ;ڊe*p}eԷ s̭l0*Rw (J2V7dSY,\^D,YcS^^cP@n@ l?(ljivþ[RTcm,x C qz^ h5)okѴL@lk^pi03sfR!W{ruE0޽P7WF*pFS' qa#kɰ }u'T 2rxѾV /5i7Ra"ԦkSn DS @ߺjNf >=̅vfeԍƱ(]g/i\Ӌz@}ӦXiP&N 3Gr7v-h;AA08Het;@TldM7Ѯ8Vhׇ"t-_.#e PglqAvR~IV|_JU)wmF"rU*B(ڷ v `j)?Kf:+R˗P*>ڞX & iӨyzAn?L*vʺq:g!ZbF+Jx9eLьF``R\',xҜ% k^ 4,j8L3r8(b(d̥]UgT/E.AX7X< L¹8z] >&Өyc/u?h5SD#x.+y`tvB4 %{,”fǥC} ܣG ԏo X$wgYeCPa)D!pP=H !P_(w:x״Vf%F_/(J> 0 X0Aw {17drn򍣱8N58or=C\eTs\F*.iZ/""NCƠ6b=Y fFp'_1Fa,~^ѹvL%NZ;Ҹj6^Y]NKQ9jZy .[;i euʸf0S߿IN{KCg\(-~ fA`9ka.`:]bRl~nMw^ n)*,/@rA^rGJ"SwXT&Qi?X9d\zeDzE@濾 ™)uɴ=_i\;]>k#~7,b75tStpyMn%OG3⢪y~hLcah3veÈnV꾦0/y}fwf h{`r{ΜRq&HMɸ?|i4(, saky4 =LX`10̂^|GBM;(3O,Mnd,C|)4VD3l@v!`(')il"++(cXcJۓ,z@ Mw!RَCh9J- ϓlP|[.lxD(XcP!Z A* -;G1*̳Es+̶yS=:"ʻLjoe(#b[ ϼn:Nx(cWeK^)=9v 阱YU{͙;R=it%İw1&˃L+e nkcɺ5W_{]X73E)cNO[?׬~y3]pP9v')@P܍+y:L}v_ R9iCغ1l&MP9 3.ؖO0ipo;u12ͣ-l4W4Dte_aX#>ޱQ!YW{JþiN7eȩ2 \P]XI\ y[Z#s{KmM)%<ܬumf:Fߙ7uh&(RPlr8͜)rۆe&<`Ru6cY@]piX`!RH֎ =P;n=\3" AH\5'M GP*pF"_Dv8ʑ 59w6Cv uc`N,eBݢlS>`-zSG0+US_`INk(O#[X5n58|T[2蘜)> Rl*FI>:]zinwOMu_-R՘8 LZ4S(̞|J^eC8ԶMj80 kb:#䍥t?x Mijz"y4)RKHŦ\T2X4#ڱ݄۳n,'vY"mx5 ;+(}k ˿lJpo#/(lUQp8S5NC/-76j%+Lps0iS i:<@h}UӞbĠ~߃aQ7#*v}}7GGGQ$X֥reۥuqC1ʧk/X7pJuVo3Ji%FפZ:VR 8Vdeu-o=k@-.E~D~9j 2ccT2+fR-*myqnLeTEn9˔,5b] N(Q 2ݞXmxNqf/-WT3,LQa|.:-Ws&1BJKUUQu/ Xqc̰ K(uf UkHL~ "YYƷaSa3jÒn3908#_X4@5α}pt; q *m\AZ8r2ƫEهR> pza=75{Ģ2W*:@Z KoX%k~􉉧P@5RI 6UET_vN{7dfk_!N9%PY7ۤu!PSTBUroA%-H"2XVGIsIQP|п rB5.p}`!riC&n tKzL˘DF55+;O러DYElA -grl= 91Q+.%JSS2ӯՌ/^1!􂥀ٞ+hc^Ng>pdu9:M37+5g,EEkAy*lFQnZ~C}!WpwU7*k f6fQQjȝ扺:ڟȧ l kmAp@fC#ˡLqs/$;uu; ^S7+M:Cдۊ ;&ic.CgMU}'\!{%z5X:55\CQTW8fk>0  w,yB9<v1{ܪb6ǴW\thP c|z |6|qqgM9V:B ?FT9ה(7G N8 iw rx! jϡ(ݙxX2ʶcK5}i=u5Cs+Eqhj׈EU_)!_mK xb珙@r̍l2{9C,T(r\rCb\S'J[';K#؊!*UŠ jcuD5)ia*c̷muoAd`@k Kb1קoN`DR¸ , zb%骻AϤtλ4Q,|acEyuYֹ-|A9/iV^jTF/LOvpOc9C=?빉Pfrzw Ɋ<Z.˗>ފfM;Fh3V% P',-+a] KgDZZVq9D+f=f RK|7 1eQGwt9T'i˓ԏ ^O9Qt0 Jĕkkc:>[~q Dh<=&`{dJΠ BxWPt%T~{i(vnPF 5KC"H2\Wi'ٹ|8P 3 ĸ1$t} P3g.%{n{ -*k$OA<@k^{VF rŴo=wίhT 2v)itsrK)0RQ&̩[tg\k YmZ "gdIPљiӣ=}fgl8l}c.ǘ4*`fj\/ъAg̤pO35B_2G7QsʨhRၥI{푱at\{h![LJhcu>D׵L@3([|Fq<ĺq4#L^jA8}9#ѷA% 1K_V`菊j`JsZ, n5|DX t.}%ٜK^ p7+2TPjffn&b..`HԏJ6kI*hVSe+j>ePɖW (prCo8W"8"eXΐYMaˮE5\0QX#q1A/!~ϛ"BfAyc]!N ^ٍve(YA3CvьMҔ\4 i8HNPeLk^1,a. =!'V2r^XK֫`!*AǼ!u# -:@׹ Z_׏JE%1S-naNefdK;ezd 4')6;Wr˅)Sw٨ w {JuxB/fL=Jd2ڰဿq*1ײj0lX:jMޥ59=a_~%x/`=vf]VWY`VHhkTy?ݽo +,D6Kޘ:Bڕ ‚S$93k7WU|fiD5|2ߔGRӻvw !2'<WEo{lK!hvz[e1}fo~¥3 _1S_蓏*mR:Vp8qvo@ 8CVK@;$ eBs̛\AC #K䎉fU>&p*X/tpD\"X Jd,2e h-W0ֹW0-!;%.D!uԱo Geѭӓ MRPe/*%̴u89Umt'U*avC]ʼn6}JB GKU+xtu_tE,Wԕ_N1Tq1T}?NOw0  WlPKtK!*]He|ͽGl)cMÓ")KŐzEas>*O:h4Bg+/ DhlٰykY̺f.HJAH9rDWq2tb6Se۪K*,gC@%U0tWȻAD|Gg˒0qbY VZ0:V]Z")}Y4ltNyqQM13D 9ZΦbG&nҠÉg\$p3&%UI}J8ޓ( N}ҙfIc26w@z+S2sc,?Xg^c$FIqUl {_&Tͷ̺z۪_އ+D1b^gCpA\m>]+1`R_T ;sa IZ|[9s1"n 5CJ(auqݭP:O4.s+=rgЎ2v< HPn/O8sbA|0<%8^FtA9԰Zw4*s,r8@ hpgBU+o7NEq @w ѾoNd\W2oa0sI"'Ml)S30f5o,nQLBk84:i)LxodPkg\ L/wK./t k}BV%7kC7eÇ$h! xGZ6 &z?+LcgrԩUӴLgC1sӦmdh:N'W~-LLsT|z%-X9h[|%%Ur)Q:l+͗|CQC qRx; tJ 4_Y͘|fep;@ KcL '|z852w& 0&QڽY(EI#7ˈ[K Կ|c?R4ωe3)G Y2q) ?XVx|L`QMavMҀ YQX%mpg3M`x J+oˊ-0_k?_n:1-# n*vjs/jxO[U :_R{C|S5IpV E[ tDxALZ22FAܹ§KPv,B FNVp?E}f$;L; K_\w۲sS>n:^W3DsMʲ/OB$Zt=|L"~Yrkl@BO p1R¾H0M ڨA+mħ荆qJPz8PJ@59" C QIT6yn.v#\φmmQj ^s/Ky#*"!6C |J&֘2%ӈeK%0y[x5ᙅK"!^b2Z2i˙˟ e)Eݯeqȥ5j,3]lVN2ƫ5bo11u)~gz~"r_I{( =sɃT{˼u~)9g%.XE)Lf |XI~R3/WI!=#)):J^.Zqܑ[@aGfiޏUYvNndE䧳LTTJ^qPY%'A8b㼩WM?1%V^.Q%{mpSC;#0$ƈWmTˑ5.ԡ7QU~R,\6R!:]A V @x=}fơLy#=pSW A&h>LQ,VY"u9[v)̣j2xf'a'Zy23#v} ݡs"l=m9(&%q*VT N%x[~&%~Sx%x X[^#ӹz̫S4dv:CGPy마NYНۀ.VVD`r }%z~ ahr1b ~GRSvJݵs2>t2q՗z9ˎ𣈬ll_(JzrӨ>!R2z03gY>Ъ]61.5Xeݩ(/ӈZΦK7q,Ctu3 hQn}2)eJTfp)Й+x#3_fMƷeU{%T;·B!$3bkhr{w+'94d]NAx=j S+* m9-`u8Ҿ%Er|D5 O̓){]0T8@<[F?5@r⯷]"-X!O \`b5Y6lZc`&rbanK?@FrE a[D6_M4 JLq3+yQy=">龡+'%G70j*eHs=X2Y]~ muYH}‹28^Sb8QT՟hL#x9Zxk~!¨|\6$p }%7tK' ̎YU3rzO6Jۙ3P ү@f YY޸] a2uC,hs ;,wcmcP}cNC A0[qK?(bYiy 8G8{xѴ+ߙ*@k6^N\cqEB0 ![4švKWvPR\b-WB}Eܶu<ǰO*O7ַ+fvؖ0 FkSb^ }n͋ףFN5dPNY(/-VT#oըfImn6Ʀd@B_ISў+:Ni]Z2^.`Kex?)J2uM%b yFXf%D g)k1!jwGO*usn7S2wI@ʢ1fs 2RJ6R 7)?Mbfzn'L"&E 1'z!R^FK!}Iӊ ]bZ@Jt$6^.v3+ PIJ)2FsYi+OUVMyDK_dǰˡq9Кa va-de`ģ|Z:=yo`Xw1緘δJqYr^4|t乱G,X)X,S \PGb_I`cv&H9%V `&6ʼ so꒩ 1CAo,))>,Ez-OA g0] aK֞GШ1yd[T6&؏q ,t`G_&s19Pg!'7 9 fwg3I.eDc>F)ΉLWY Y4xL &,m2weN!ĽgTh仪LqZMd&Xad\1243+q 0H)}QJE* Fk"G>m>ӓa!"{ѝ}i  pLXQ\< /o߿݈L 1 !y 6`dӻ2nX)^,ZU2F'2q}rTAaVUNжYje\=]fFYږ\/3$}.Yr.kCNh ;Z~k%-.;!Ny"}W&#y.s(=/wؘ>VO#jiЇ 6kTE ETu4,}AGXo/uܕ9+r8+ a!eM1$p0>"Pe F\g_5QQN;C [m3 ee_pg‡SZ|[?dfVl8-mJ{2G\־g'mSM;1M%ҹz' Omkn`/ӆ?D:ԡCyͺd -f/Qx_aZuJi.WlDR=/*EcnTL}!=WXoC|-v3u9k5"y&|X,\;8`<,GCkDܨ)v@XfEL-"\*s([߫}gC2E%:*3iPX9ݶf27ԗ6@4*c!ŘOɣa _s+8秆i<6|\(y_)a{,'78;[ O{\4.(BQ<!/oio.ml)2b!q d˿MbfT0j[he]hyD`/3w~I\^(&,ےÇ'C QLЩӿĻe<& `1/ PwQp=YY|ŝa1nZa~sh혠IkԻW YYu\J.uqa).A+sS)Z"7u.!ʤ y{Lyt˭}Z>k)2:21yu7K;83Ծrena4zz1s/G$̻Q#AX%te}"Ef51s3[T/j n6n*g5*+iNP.Q" ʳGf;Fgf6Z7*ӯM!y6d37K0JƠVvgkk kgK5\R]w2_s,}Ha5V(ԀYyS%_ MIB=XP,p'#l%QuSN}FTZ`A\p}s*TɆdٿYf<ޮekΆ$AϼQa)_R`~ܰ5gl0 0=_V(^@|Po3,s}HfWf}|Yf!~ l#"eHg蜲AkѦ98B2D+R et3p2IbSal˼04#7qljۼ@}%,m^rÔ5 ^&pkњFJ0@ -_/_#Gt=ߥ&*z&~Wa\תvj[3|g'̹,a73ƜC:u3b[q&P;3n٤~f4l#h0;eN$.\׭Ds_nI[L($S#jG1:e[[a :Mߍ9sKG1fJ"T/H?TJeB:lqIbgpWl>pd9VѿD 0FZ\8L_iOyuTՇٍ̽`c6#ӬxhT~s-Yؕq3n2J`M3*?b }#GeVyFof<.0˩YcÈ0[N"Id9뼭urK.˲[)A=Rs9Mq2#|ͿO7~ʂh1_mk#~o05 D6Q+_8h0TA8~!In߹+sWJt:mg}љ=xVfe{9N_Z0a!b2uO/CzMl+c*Xbά>@ĥ ÝJ+ҏ~p[s 5pY͉OɹQƊ 1fj|Ҍ bz<.;:Cp8<ǡQCmjqL ܱKG J/B+W2x3e uw5'ZY@;ObGAylz˸oG,_+MarV|E f\}e}B,tg>'򏥱{YC@;OCs&q(Yٹlʬ@]IONv2^j , ^tF%/JO-6F]JD!n5۔5̱ooS,_ghe;ןJN zX%t/֏T$+g/zCP5V xP/5wpVj㯩o512]-#\6u0BqWXegEom|EuS"J-Z&k/gLp2ZMYNs,F: r/w}6l[xunU6D62#]R-n+"bS۷SϠg៊4CJl_ Ŷ*=SV#|33"9pva7U&,-JjncG\5GflXruE 0[ \<^~YSe-qybX5/\?tI*o\X*efؿB[]#dOywNgR#Srňs%0?(, M3W_i|c]H;} PsSj$|ɣm+ y>ψSs(:z;j=G5yFTZ^ 0WxYL@PTIR3#oWaGy'b.\\cޅMS\0S1pŸ~?lLfX/?eMw ߂ozhu#g`z.,0ј NB 0f<0S~+@nj癖J'i+9en1:fjcё0Sƥ-L{Dys. vzJW̪Z2M2hG&68F,hseCGej]89V]X[2E~_> 2؜dr]B ۼx)܃Ŷ:ܲ ecĢi{\G<aIȕ/+q.q*N!O"V$1}Y7>VܚeGcuocBV0jwcmh,By16Uvv< 5BXLy)ĽVx' Fr0XwaN.20vgcQc4H>&ǙytKH/_2,]#-ݼ̉g)Ei71w4Gn)_ $J޻MGNf-SamڋE3NqU>鈀PƥF-i=EvVF9-U<7*~Ia-ku21O ڐs#Z5qc1B+9n1@=tӆqʩAyw,ZÍ`+os)"/%@ Jή%^L6/yA,iT&rSrwܥGgICבLOgfg&0E d4;Sg2@5fSAD:Wyn zX#y~U7f̸X1G\U{k7=$vCATDw7q1ü;1 T'RX0;S>^.' %pZ>aH:i*q?}=Q J.:J(OCܔf#I 0TKHY۩-e; ިL՗A7.We20tv:ٝ~g0*ߖZ1!LqiC.gb+70p`UjGh9G[ q:yr,d|Զ 㙞 ?=sq&Y=>O-n0JaADj~uMIk.vDsS&Еq閇0Ic^f)q^f9B\fu q 1+܉TvJ{&r`擴^U~s0Bf nTEEwԵ2;/~p:]~Rƻ"#:OKq^%s Tc{ʰ~띟SЇiv G9obvche\3;@-n=#_g̹Ri)}=ƍP_!uNn{[KW|JHXv1)fC]MGw ޠ]ǫ|1С\,xX]cu /9Q; v2qb^%Sat);3Me|Cr9*a`3^nwz.g̥qԮӡLG? LRcge8άܢVxR/y%<}Q==Z6c楛8L<@ k=c9 %)%Ǧ'3~ g>˧4coO9"s7ـvXwgt#ɡFJҳF0І2C9d¬wjAϏI2B.(+)Ybbnc+3G0X;ͣN"`]7ܞݝLЅ(>DžʶQ{NjS]S]B:4x%,U0:Ϣ>=KVF}陔X+ai3a7yvZ4 )ڃ[NDwO^~#ѣP2:Kc-k.Ȋ^k%2\˄szjLL1&qqʻ3dt;MADP+c{jh ^&Z^ +%{âh-bծe~#5[PFcB2-0%n2{LѼb,~aSqȫU6ī6ʋQϻO>'N% '1y}<¼L!bopsb\?hz4WzQb{ b'<]#kUQz9+-+Q! :1MOE\el_&wYMGImOV?812zƹ'ȷgg3LՓ` 5R"7틤.`NS%ʆ=9 wrzns9ۜ_[/iVcF-oXm0MR <>Dqǎ=Ftxϙ]5s^~gs4+7RmPV~jq (P+<1#0Q vD܎J`ZV{5I5h/9$sQ6(;kSdeivJQbssmi~c8Ks~==" L32cxr-LLgN`2Ѭ0)JDt}*d.Rs0q]%T-hJ tjLtOi nvo:6A/Z8Snڥ=xiޱ7,F 8gZICلmKY܍PܳWȈM!ꌚ/1q^;9h= SQ̒R,NW~T6޾ed1~]x: +]438=Ǡw cQTucqb2[zIk˰B.D37(wvy*3g/K9xeJ; zY{J[*.)^%~Ck8ZW%刱m3!0CX/LOĻ,>J}(J%Td~H}ѱCf/a'S vm GInw bs-ǟS!d۝RG>5Īnc!vaX xYUJu\o-;17K{x/ea}NJLf lN*4#| ]f_uwswĿ 3Vlpg΃!B4%,Of}7 Ny%ܓwR/ѯ^/5 jsң屪˞ۨ$+2f]RN/9~+PN*@sLĠ~Bʀʥ ݾƥYUoZ5,6TgUBW jU[۟H*Ú0 &.1p#ڠWAiB]~0}+db ]vEgh):͈I(`|?tcQXDLwgNɨzae>S718w h}Y3T W:?Ƭ{況}0lpao$t6C6}fW_9DIg^LgP S!h?skZ `{|5P{ m!g:"MLC= Y}q+SF22R(Ļōyo"&Ne|+-7a5 48ӿ_ގe GH˸+q`'Bgz6{~=XY 'tD=1OdN7AeTR'3^YdNDy&} z-S Д3{eG {"[.o;QxkT#fMf+g0|*KXās^Cܖ3~bm { ]=u8z)ܠh+1]]ݏGc(ؚ51@iLx0f\RseHɁ͞bX㈻"Z;$X(:89O;b/>}'髠> $-%TuY#MXbep pFpƝb")<^.eq ON\)}!3p {:VX Por=4Q؎=As X(^3<̪L,}ĵ% `勸<@z^2Ma(-lG׫X'BVu/XqT[IQ0&UNV#/f$kxzzkIe724yzo2Wa4@ vt c$hY9ε7%w% Aٞ`H8'()%u3.~4py;.Sxk՗fSobѤ̡ 萯 (gs˙YzC lp@daLYnk{f1vnK\YL:K) *K&,ρ~gmR/KdQ=WчCT\Ks238vp#Ib-c>P@a&h%Fos~"s"Am1L#,D𘾒`do&fqQA4I{ē$*@Uڍ8qK[-j z mtq+0flHg9pL )݄v`c>#<х}@p%ncџi"T1+u.+d^*P1n}y#SL9G_eu=݋1}aD>X6:[;YzOОIwl;AHxرQ-r ӇYi3Lt^20E3znsL0i[rvwNc}7\Tj|ٽ ǥ?2S!2ƙ]#fK^BO1,KJ}-W傰xJ1 秴/i 0Y-}3-(h-N_.W!ZU0UҎ(s,50u3(ryl k? ; {,AؤyW_>wij .k hNҜe8/ܞDvҷ/ C6 e1h/T2n!0_ޑj"*ܗ*-Tfx+`-7D.w*_Ϫߤ12ޥ9ͶOy 89yv &&q4b"wR%Lm_7U(2  2F̺AvT8ZT`)92ֶ̠w 7r].XPm79A3"~浘 }(<#['M X-̙U3Q^дP Sh9>m|])5JhTuIPY-& s49ΦLŲ yi/c%C}fZzz2_K=cu7Eyֽ1Ms;&,[UQl-o%T؆ ;J`'0pԾ:Jke{TJ;s`5(<] J ߈^wV%<{\ʧG \2|Jo%f(c~&r,W5Oiǘ`M Ûo%h !pA(`1 (CEch,_i5Lc8O*Q`M B 2BW(Uz$0&w˳` 8 k3EH\u1̫W FڎT蟑ƫ76Bf~4kq5ƿmX4jR`)rU&Kd5_hMlalLD&~pr$zj8g%z Me\eFFiӏFopz03]3ǥF %PJi/^s|"4Q.bb.1V1j1rCzЍ5g)}a'I1ݧ[L0 `T,};jf#; *uC*5`ORܑuҥ, 5X(s(1}Kg@QPSL/\Muxj%fbtnKჸktXQaW `)!_ 'e@%#6pfd,'w-"* uIpaMv*rf.9"eB5ǰu! _J+9^&FS̽4>/?J>Y|jjcY(pMosuj˴"<: }BzMO1ǯ2#؏} <z&Sy(VJ踄N%WWĪg!JMs9y#pplЕ¿4dǙm۴\Kc)xU@(F>C\xZjc2AcW-t3aќG.9EW 5 3bi2rܻTeeЗJXBU60"Kݱ`?/7>҈"1sZu{nb wipt{ʑ1Nc*Ѡ/rfE=b^950 ]Y* pq@}e${"QI4cw#~ص~7rfQeoDNefjԫ~!cN.fp_F%W9fs*gʢ@:Mn Ö9>!Zi_AwsQJ3̊Cz0Lquwc$ aԮ '%̹ ֮Q` XLjJ?;1)rzX_2^&&aRu#hwacΌD,%Ĭ-aB;-L Ś#E"d^gmeu"Ըe[M'0uVBb& (Oe|&ԮRW-~7%M,;8`:pJgH:8\ L5u Hu5ƒGJ+vk{RbQK{eCw@^(Ꙧ9D}e&ۇg9ɂ:!G0)f}.{C tq.4@0g zF0f;.C`Qn7:FRʲl ` ΄]Mb--2Hx"NyaUѬq3pwCi~!fsG63E{ť="[~AzNO5D 8*ݟ cKs=<Hi L_ڗ >`Z\ 90Q.C<AN8 4@rcw_lu,>{?M"򹒍x ͬJ2a3̵,Û,S"YmJQ+3SҽN`9ԋ1hz*i2fxf(&ebpT?V X>f/<]j1^#JFGBmn1`.U #k *?Pmx<gH7C ʷj26_#3D_KF8f#cҨ'hdI^TJb1 v&&Z͕ ip5;tPTXqslFi#9jg̨w&& d{N!sewk~_$ Ji#YrPUb;f"/Kc9i z5Z=<55ʢl @|,3*>铄,9L$! ϡkѿ]>5˛Hϣ~YjQ1T?uۊdڹ2^͗bc"S''dNMxA͹ _hP|qEcPlT jϰe!.-;yҭi ]r\Acۜ 5g&Suh>uc3}jvBb`.zi G702gP̪bY/=QLh0 d:KkY|3cI!\j+2,GXvc$!8^J:A^3:B5DrK<2=BPXJC8RрIoG'P eep]y _#9=C߬2F 6i J.g/Emr>:=(ff,tZ,C3ZoE)I@~4@fHĢOX8|DBɾrDe_X9 7! CC}>"TR@ Yߢ\KĪ7d73}bw>YFRS*(=sa}a8lje}XR`7M9/Ҩ_yd..k d֘ W^0,%J :_XY`C/A+Sp34#Bimeqś*醥0yk:53b* ǘ=Jv2GieR$\QS}c(ێ,`)ŸH<@nJV(.sA4u7٣B\oLs*THzWTR\3} Lښh|]hk,4*k>hNg EKzi~Ie@W@/Ó@`gcѴJL ~\lZmm[򩢧91;s;u(-re^]18"WA,oi%·lF+zv\T,J0I>JNJc9%WZ=22*ehZE=AUxQɿi}Y\E!$վT'DycmpVly3( FKt40bS<:* 535 ]~[:8=>2Lec^ԩY|76^)1u/ "WT*.UI% o3 rɛ9f~Rnl6̪-;N{6&-Q>%t59 =SD} =35aAy5*Bh+mX7q/.:S8 n[9oPw+טp)`]_3c7)'9әUܰWŌh!f&G"^L2ZhДMZD:y!:?4Z[{gK~9 v>O%7|K_XGYYLCO}X=e*!1AQaq 0@P?/TR ҿ}B.\ ./B.\r.\HAGqcYKH:8Z- ^ r˗/+.\peƢtr/~\aU@˗t(0Eȸ.C \(HL :?rѹr˗`˗\ yʉ 8?ĹqK?}<=1[3=P@:J333a!/_\r_K.__a6 uG=02/aHtFTRt*S:$r˗*ErTJ+ tW򨒥tN+RJRQb躃^eAX._*T}oYR W&[`UiQCfU|dNL#Ѓܹ}.\}_}/*J\qbqܸ *U[]ZS]@5T*TAper˃.?Q%tu ~@6&B1s_n\Yrˋ/(zBTI_en-q!c ҄_*T\/*TR}n\}n\Yrآ+miHrM%JTQ%u*.qt#lhtCۡab=0ƒK#$u\2չrοJ+/qa O)D8f՟~~%uRu.\} _CsGAp /u]rUꌾ K.\Zҥtj$a0^J`Dfaf#% ;ch[$]#|oM*!P%J/lJJ+e1_ٔʘrԯ}.\r\}*T+ + l|B涞 2#ԓ.5io_edͶYr˗JRq ˗._\QǢ e"G>BQ(*$p`˗.}C*;.\r\}jWa:nΠbi{x* +u/K -(,wF* ވLڮMsX[n\r.\rR'f/6XvkLJ< n㺪eOF A* M\a2X\uV+d4U!"`w2yFXZLPr .CGt%n;]*B `[ekIܴ(䟿撿rӹ0z;T0Q8HTAi,splXUo+L`Bj|ےpӎ^vAUTUr@ ݩxF- ҉6X`JVt*422tr˗_r J*_NB|gh6 fc ANs%$5& 2]FE\`awt$K.`=//]W{rXIPHͰ]/l h4גBlHƱ#߿ig~0)#Q^B}~/1~isX(ϘK? O)׼ǩœ| F":_*W0e9꧜ف!NsSUKB:0 !JoRv00B#< dSxKY/d`y Ц^‹c^/ e88)Ef!PӃ{0I9!npHW .,y贝0rǟ5r` P{ioPw8B4)ōj*k+LvS2riʆT =o3#Vf ;+ODA, B!n=Ņxq9MBϓ=cf%n7-o%[*ϙV Ru}@+E?\rѹUnTJDK1V9F$yQ! ՕbdaR8+V-)9KHHW>yuhw$%5˗._r.\W*\+}vEzd(l0(LZ>_T0A r|m,%Zd:Jk#s{|22%baizIf; R[*r9>0m5V򚔆C~f YuӮ 7 BhrԿ.\rɨof);`S# " X' 1.Xq ]S!qr#?SdHrX^ ̏:5QtuS&Gi/v/99IsXr?/B082Y_Әjg?Ws[O*j]460T/:=e4XX-yJIv쵨<̮r I<1K˿}wLx)P!osAոm;:QPJ)^׵6OD*& $NJ_E4^ ljRҹr$RPG"DzcUn W]JRU[J*7 q!k~JU7.ԫFv)ح@%괡_.;3yY7CՓ.J pS~KCβJݝ[ Bo_*TIRWST\z,<Ϳ;#i}=o+o"L*Y\ޞC-eeuIyW*j& cvsA-koG ZP&>.(14ODVwwwzV>+ @ ү?#P ZDHqV2ŔN!S-_C8xn$_w.\_wy`堨5SP=[]Uhߨ+%Iʺ!^d"-r׹R=Ve}t#TWM} Ǚj'kLPY1P1 #c{j0{B|l2s0e?Tf4ypwFoʵ 65D"_ '%. C@mcǍy~&mR{ 7J/H N_rr%J#/^zmm^4Lny%Q3''=8MAoklJFNפx-e˭+R[Ÿ.Uq 7.\"UmIP`̺֋UAZ&K8! |sr'ĻN**WG~0UxCoAMrR)Q 1ejleϭTZ\ L RԡV( %r7(򐥗FJk&ْ+l;nT "^6Al? QEB7i3NU z Jkk0ч㔙f}X=+E| =Cf⮾kC?5JӰnJM$q 77)RV9Db;g{3jø ^ M!{J&ST8b0|}n\KrkM ᙪg`N%fi)nX\Bh*~An?79^,雔? 2˵`f+ 5Pmu;[26aB[*z2,!MI2p9WBmc,tzWr˗/L[)+ZvsCڊٓ:EXJcjnݔCrw _L܌ؽH)ݧ=@;pU/%QvS98㜭q?wrSO8L]aY#;wѥKiK)c7)c@L"/[1JXP`h[y!EboeZqO{C#\_._/(4rRJ3ʸ"9b5De]l"I))?v2ª#bu+'E`⇵k{ݒ)ǿ`BW9\%V, ݕajk*O*WQ̹D׶:G{D|Lcx| |Z u;yϠQ)2❘V0Z%>' ¥={9 J^rl!,!߸2, JN-`!b`D[QYvcf`2`)q77gSjB6>!ݼk˗/r%]*k#rf7ӈ4$57,`B4#*e)G?,1̺"ިʇSk-tTݨX hEs%%==u<8c;y$Iڢ_O37`|& *u}HTj;?bielU<dHcC,sD$&651ah-`ERJjXh` 2_D}Zu> Ha# ʸƔ6?}ʘG$KKK< r,1 r^2 1â!:^qm̗zi~!ME{=OVHv2Y._}oQ2T66R^}H?~lEk9S }eƕ=O If¢0bXb7sv<.\zy"C5olLD\!6 Kr}o\r+øj&ʣbxZr66.0h#M`킣UNQ,9 7ZEZhri-,QU-_!b_r~LEN% Y8Vˢ\˗/w-eD dv>'iዀ6"C=/SP3Co?ք׾n6'{A*ntf.ܼfg[h4ݧ?n豎!}X4Z!)J7fdg3pc+}ށTN8M{d0n䲂csΧm>"[Sߊ.ϧw r˗._J7/tPiI_ ɦxc d5c0O5Jk$BVe!M[FwׄX1 bCzeӫ@څa pd瑗y.pT>Q9H˓u}ru/jW}.\˗/_[k r ÿc3d0EoUKh0֯f*|b:neоY ʚQMN#ZbJ||b#1!b#IYb8a&£0Uo!J^7zG+"+B1vP/Sʌ_JVRY~S+vy!TiBɸ|[2%Ɏ^ kJ;[C;pTX:ZWbam4ps}53c2g[xh0(bP+g>f~#j3m Y2BT1Wous<L4~Xu *~be˗/\"i&)㝻9_k'e3l-a8/ A._^,&wRHϘ+ z3b@LTz&^G{jig鸎ځM/o+3 ԳRrd4BM :nI++Њ+~(D,)\Gn<:e1w8~f7\2}La_bm5 U8#22OUM=хJ*A.U{\+-ێ5L?.L9mJ0TJw?WՍ]^UM^Xy{6(w," Ev ;QB|`X7 ֘|{JzW|2W.\r ev~ }?|:Vb<8}~*)q Rӽivj $2pTh @}e0w~=Ȥso!SyvCq~? ," v{':#&jr Q}3c6 6'j-MرSJR&tt<^RT>gץ -GDqKƭЪqUqy !pʏ"ݱk{Q5,?f~茗U]߃xbݯ!T U?uL7LI!n$ϯw/u@sɳFpb:(ٜ&v<-!Ji5]ahj|NpqG7īf-gzWXp.FX}TD嵍/\< lwA-R]ц7NX- i>%tB!rls%;.rRJ޵*_|U$WoJ])yM3cOi8BG &)t"J6K* ^pk$%+Px}Pp+ T&IQpς ئ$c+i v0Ơ.܌bW!Zq4y!YrC"b6VHJsv\?BG3v<6b ؀g!|0GXɹ&\  C?8drSl͓fGo$e)cZ5'ҩO M[RRw3ȳ+x7e8EsaqUeFEApJE$Ko }o$z*hsk|gs(J.f!E ὏ `,yC}J"ӤKxNA.=]мɦTӲv34=(+ T1k)L`XR* (+[_c3%UJ][%s+?ځ t(4MɬnMe=̻@a@Ƽt T's>F½ɞ?L.U}FE[%y8T NrDB QH @m$ +xȕZ3@f"3 &11T31&tX#ζ4d 5/C"i UKɖ/0P_{k _o,8y^1nx˲1f,u+VDt5߀)C@<:g`pBVicАѷ]ku._lwe[""mƛȝcpg[}(S`ԯn&N3ɃFgusf#0eqY 0 NnuƬ^Y9 P( lL@N Өy8M<8pJMn 036S4\9u-g CWkU˗._KЮ͙0mCE %ak+>M]1~bs,vCΎ dx=8LZ00ො^o |=تUDϴ^)7V\^Sұm (> bjŽ3 1k'#Y2'FNQP9P'?&zԩ_.=YkіU#s_H&L(szf3ty5`'Qs4$4ld|cU+w F1Qq3ev0KȌn y ZjF>X{ X5EuƠ/wHnͷK7%$U33U|f6cPaM{ƹn)7Vþ+/m`3N tݚs~ N`?*`rU'(Y.Ԥ1#،aYGm) X%,j*v~ێNQ{[W(!| Ǭ Co5W1Q3HsX<]AgT6?K*OOWm!23ow=NB/CR[%L_ aB˖K",Dl4oX}Ec{+NC_ <}#цH22ҊPB EW )X 1b X- XD p3v"adv%j ¹ca-Kޣl;Wg/ F/Y&Wj+8lßlq2N*YN0_7‚lՙ> ͋!&צ,[L R>Pq%I/P'ǤXc0I?셞*/aXA PŶ im>J4PdZŔpOP[,߄Y@+UeeIYbSukQ3`e#Cp4ªddcMU2VKa.Wc Ԧg]7Byxo>=h~6~|j#W%.15Uo_㾗/꿃SWt=_/10)tx ˥e?T ^~FE b ž'.lT<69հVDhoL4nk_-Id`66s^t+ )Z4i 5`[dޠ~Ț[jA1uNTSBhƫs1/&cSMiLpKxqV>+aRp!/?bA6ʬh [1gNDZg?_V5N4jpq;|E=WR F_'/g_1 Vo\Ꮏ&W7J '-UhTAC/"FemyBdMe®3p/Zb?Qn6a@$2Nl8#@9le#.!9pzPXIS +q*z4kjs?8.Rv0.Pa]438gI@8 mfh<4T$݈^/A(/mmyTXmeI{KfnԗUf%aܐ[-N*YK c'x녮gljbqw`wr *C[cpɗ7lӫy X0̉oR^U]2 k8[aOTk./ByBllNDǢ zr힇_ORkǘY,J;MQ*˗6S 4nɥbR0K];*y<b,WQ36 ]=t|v `ÃMxC Ac@J3{UԢStcU 9=gT9S 2I?C2]ciiBhFfnb[bml65rexLULY>8(j.l\1UZDsue ,MkEBƞU_%kbvqQ&j^,y82ZFh"-d N`0;lmr wREE0k`, b8:Z%ĻPklN;c+8e_[wc8ߗe;AsGvW඲_dG¿~12[ǨZudҥ}]+p؏@ 0j_cVgٙc:W}XF6W JSpߎ*[Tp*RKr܊%xnʐ,N3_b| D4 Xp C" \iż FypMd&Yj` q4t%*ʇp_`j9Xv-FQlee~ tlbCXZL)DҳErj-<8\N&9cx`51F\YcWGtn_5ÕL+JB;aB hdI|vJHgjbQDG9ya`pfzFԿt 5Zu,4Ŭ5z׹Ah!Bj)V4h$vn+%L2grI(Ҷcɗ& 9sPagI{@T)(xuZj'8 uݩ{@XBȮh9HX ^E k0,- `J?-R#1FU<{U'h4@ x@̢ͫ>(s {Q= Ѻ qIW`RgRPR эoe4GMQ«k:iݟ0A@!\mB/ٍEaEFy&]}7 fMxaBw/9_-ƗOy mf*gB'Nj#/rղ&e0`*#bz^K Ib}(ow rH y\RІfҲ0m KTFRx‡vfPw}60he Wn IJaE1Klp*6?K@ݷ4'Bt )DNOnvBrPxizI WEoq3_;edx旒3Yj^NVvޛ:Ra34鴅Ijͮ$M[WX{"7堂W;Ɓ`8X@+eBPbOk֪hKuhYWʦX[0X+u)\ؼ*˭AbRႋ78#~ H19r\jk_eheB[4LD9F(KYnuĽC燹Eu`m?ilpt_vT`L_ ewXAXq$ե>X*v=H ,HU5pXRW\]2SD#BXt)صr*3Gyc_/e]z^a_)A>)1MATi&*-ʋdٞ[< ׅѦ0 3^EIP21|\ Mבw2xܸm j~EcwKu8D \&<%.-2z4(F^ ^"ʽT@Rv!!m9~g;n-YQq+ U:ז&ZY#T;1KE3ZOoGیO,C~~;_^o4D'LJ%ƈ@C1EH_^C߃hN܁i}.b_P5DEKϙA8DYMiZ̪ruX@CIZzKds X.Ȳ1峼m1L-n YE(k+P\Ns` g5* whYfa}Rռ9,  o^m|,CTc4B*۫?@ qC^~+pbA1X[ "98z6w u ט[39:{wB<,_>ŦNx8}3F{oL}:φʳ)| .HA/*%)[Q^gWjZ(Ⳙd6^9dEٶx ?8Pq~nYH54n!7Z/,%O J:vZkl]=einRVJ%^V5I, f)I! [  Y.aC"cuF%+ڥUi4NDcsPG{9*YAv9p"` ~3)$L~tB֒kno0缩-Ear =t Ҹgh n g 2:*Urb#IG'r ,b_;JSP"#PET`5ⸯ)2,/cYc/L3h@P _r3z>5b]XXW֢ڣ`g#RF@Xp ԡanԘ!U@b--Ӧ̀A򈣹c0ѷ@p9WBAF!k)"Få۟rK.K$jŀvVJ#] n"3sD*̠74Ns) 蔭SWd$o <Կ vJn{1Er_Ob 2vCcp{V".yb_[`j0ૂ9fOӦ7h+ǔ{Lr dlu˵>l|&<1;Sa2`+54qBn|XmVë;QjsX @LSVDolJ5}a\=x͐x?.ގa.ʍ^fIR-E* gf`uD0B` ."Oz(K֭P#$雄R.+W>e7]-O-*PY)36\(\J:=(sr*"3p."rTw)6`F1r /Oirso=ATډ)wOhP_ aevPN`՛ٍXچÑ S^, i@j ;ucgDV ,3 Qp=Owq`,s$.42? G"vƍRryʖS]$DWQ0ȞA`Bn{z$Xza[Ь), L{q XE/3F2c ^'g_$շL(fjw nf)lD b#~e}U lgdm2W Eh\ybB[VD.KeoK(X ̝)/hb6Xskx_1Uu&4TbXUwtx&\Lr o9 jɄ"zk j2 4AAZr鵹!#'S08mM׉)ŵUǡ!)nO1-n\5(ܟTG>TZ\czTv 0@W1 @0mRvRtdJܼR@F2"54BA6(gLkBiNfRQݼ*0<,805 g>=2R/m/5Ev7;"79n 32 %5Щ3Qƻ ȿ "WյGU QSN-·.{ʞm.WjN'Ԍ,(ڰ`Q%,.@|B O[igOx,(cQs*8!A@!Z\"ɲd vvM(hM#$=Stϑ׷8cZvF#SOLِb!: U|P*VZb֡O+SK/cPx r {/"ٽc30a,KTBf{|Ӵ3Cee\[a0ivQ0PZl3\ҳFc Pg VJ.`Uyq=xu+46\h+ m{]xϰf@>#v㰖)^V.1I퀘 [XٖuZ)`&l{٪9kGA(Uut@]T+y_*\p=fZS*X~p܅m9m* u3oԷ+m!Ig7L_buRXj}Pϸ's7 b ObK#~b-(b\sLD, dҏtfR/;ui%^qb to!PggkXAScNC}ojHb1:fKF qN?.e? qPi|v" &bKq tf"0b]>#V.QpswMcz,@[~b~Q骸U&6 [!+/}azHe2f-K8q1N֪UNSe.,7pDh>z%w497a*Ulmh"sb k75{bP]Q'Ee5wO+uUDwfljE0[w!,чɘY+[؊A}/~]hj?eAgQ<35V' ;o/,lEe. Q6pY2 X 7*S;.+־ɚAՌO.YV\3^<#;(F奱O~Q򧐝vX׳*1v0# M)FhFfDfY~߷NGi'AKq 8Ɛl}V;B&񕯍"D(Ͳ|BEN އ/t$e[CvdCL MYmƎ.TWp =xүew@c%h̨UJ5@Ҧ)pneYJ0P-"aq`7oi,!bZ+q( y9Y̻q8R e8I46eY"[RsHhز4A…o^p^7ܢrg2ݟ\;.ị% l%B`QyG\F[[\% Ơ ^8DUzUl*D5'1EW y;p56b( :7v~(MmSVn`:VB+l"o-;̸ՋL:D, fw~rF#: ߴbΘ%&ILdJq \4m.qv*ٵcDW,3,ᭅFBh@f y7Vr1-qU@!yWn-ET%hY6S2ĭR(Kl.8n4 'l#ԸF.c>cVhj#( 9v>nS(ޮ+ L>B,6:Uj,LS^@fP֕ y,he*5dȇvQbr#SAu0Z{̿ĭLV(6/zeо%r8r4#-%Rsi̳<_/CY2 >ks28{K"\1l^Ɲ&b|i!X\H`j+,B >a* l׻.pJr@-¥Uo-SXR7[d3b5CXams2}43اDF2𜟨KwEƍ/Z1Nd2n'޻NTd|Mx)?fm][~ɗv% Hߒ Ar‡1iмX4X&ʓA~.Z.GI^v|BUɘ_4Kڲ,!A;( (`Sd+GuWtq rZSW5UCMRPXL1m8|@g8̡tlm,]ʪe.4M1}v2rITĭ9~PH߆qdhFܙ7M@yUanEE1lZZ0Pq@uK^W gWA1gx-S%n}Y" "3;'0h[Co-("@}b_mANvNo࿹_wCINvGL슕h?/v|~ S~?a-XҲ+?0TZFfN/E?r1Jⱏ*{ؽ1.U.0s*xw|ᘤ$~I&]C=K0]'ܴ 9}x2i4Xd<&Ƞ6)|d3c .&N{\UԶ6]V aшPA]&ͭZsSg򷃛2*M%^M&u 7bV@/rQMfDQÇV1q8"Emw+_{&$J+;@4gO̲ ˳߁>D/ &Z;GVV^m)|R5H&6=`~ѨnYdzR`M".Eb]R}EBoo`Z&Jx ߙfj5=E" | !Y3&p ι"$g;˪$D4,5M]HJ&X`6,FTE ]+CYV]7Y]a .lͱE 4#1b3 h],tby bpX%%su[f Qnh&Q|D \HoA;`4؇!7AnKa3guBpL(o}K'Wq F \PK$̬qIN},?07)-iܳq5 m2Y (#k|gXR'?#QBo Հ!m}@.˚Arr%-]Y<ȋz&L&{[ÿ2zLc : 3-:4/}iwPch#|Vh|ƹ5rGwmf:w2RL+QqnY4شuD Vv Wj1򺶧kAR+egb*ཏK÷7@4%1M]%T%VX@$l{fvsօ ^W9~V{%S$<"; #6_=΄w}RAbV*bGSR\c4;Lf%DqKswᘀKsMF;BGt뗣 2*qVfh6_lr+$GDwv_'<{)cy9qpV\Uj=ʙlRZA"Φs_;#Hbe&!%> Pԡ!4xҔ”_DTÚnT E]7W%"휆Tv.ͿE€8)e*]{FexĶedTƝFH[Lbv @tTC|Z\pJaAVjZ;cT*)n_!%ў26Θow&f,o `,Z8+ g S78n+$.L/"k}{ Jah*Q~q7|ef+ł1Ʉ2[$c,eAiZhU}$s,G/ TYj"AbweCB̓=ux]Cl&l|4ZrPX45ah  y5`=;9e 4A ئ`yk&XQc C5M0ԳA!o*!0e68GLb` –/(\U˥%b'f bVDI>*)|2C5q!/4=[LH6%i!abEVjU2D~X/UQz>Pܾs6*bes XF ኹJ>lb8鋯A:'"xS!MT%(WB {DAn7oy\GGZ!d}Bh %A*(QG{j:d n -,$f [Bqm)"Lh UP5X[. ~+ 3׮ oaߕhTL,E"c@U]h,נcKpro2t[&y3gzK}F^$mUj1}#wcU1˿1Ífo'VdzIH[tL)ipN9Z*dآiZeQxã'fgyO] jRq To(Xٖ`2)⩑1cx< ٘z0A H򙋖g*C_A,(7!@0@[0I&уTVtNnWN ٘,.'m_*un֠q-%j6f)R ^{K+UF6T/q>6QVeUq3-D%VW[weoUM7ž#f@UZ 5(/$ei+loqi Ւ֮i5J;a3VŸW*[ZUPH8&;$4%a|lq@&oD8@oo/.R.^,?WIBgeЗ< 򦒺NT=2c!ڲ@?XcK xaV]> Lb}SjI4q9LRan}(:Ȍdy1Q0)뙈c7yn*FQ[``mf5{ &hes3=j]RYwjR)4QT*WiVhSl9bʁXj! fkLJ0;wKnT,hyBk>heWK)7=<Wjp*9 eXj7r|aPzv5vq{tS<@*!E2P ^pA6QIGgYvHKxgf!nw+LDVdWzdw ֗=HK0W^ yYww P1߷UKGmoiYNe-=n9sEJxǖ`97'NG EU8ݙƕe C 1J-pDIh%Z x?'a97}O64@tLR|G&theԔ B("d&a.Hee.q~h [0>FV/x -mt@4Z)dEY[fc?2LSASM )6ALU#$sNPZx9qnŸ4#c 4@wt0_JؓU;18#[ SFVXcyNM;*)*̷KGvA "0Kҭ,J"xӏ(jaYŘ7+\ ɔLQa2ih ;TstTD丘 Gf@{Љ?r zVفQ9n_׆v)wڋXaS|۽],q|E0!:RS= Zd/89^+kb uDWl)v8 Af{4(Yyn̰䯍{ {Z6DkRQ@  C^&jD!6q~ _@zH|FZ ՗0Qq{I|"Pz-AC6L-D)4spq`b0^c Kv,(U|EAnp6xށ\.c ^#(1TeLO%bR >JS 0eAH6ʄiWQ4;eTw}xD7 3;'%s~Ҟhܫx};&2}יnnљP+, qe)O0C men6Zl çDRT2|nʎg~ s~`/QUa_{Nߘ3 ADD] 5w `N AV(Ķi5NۻBO'~mt1(\BPM7uF!md ,rlآ^WF'v52PZ܈~'0ZV6P3,K">6[?b/s;vr^QK ZU;xT^LKg,n4/Ҋ(I9 V wC֠*Zp #O5zn@[`)w*K5͙nBK0k9̍5ey.~>b zqZC|Oٖg[3h |3n|Jpnr>ʝ?+*7VPLMb[Qݍ2,e ^ 7:$Di-I:{ڢRS`ʭݞd?]U/ Y8G+}٪Ke ɮPGI"ɭ `4Ɇn8`wlH3% l=V]$0B#N_c/aDĠS4J3z`WeCEwTb9|o1E/bw"v=q7:i.CCheEŰ('sMr֮4"`d{ogԣj7b kR@b/u0(f&ں7ĺ3wQ4y%,4_I[MKS#' K;#;a(:ebJs~WCIxVa]O7o8 Id +/۰'`nMO1I\> 79{Nu7@IPttn,4qW@UZ" v@{>c)u|MȽWI [N"#V>"AKS!vfzK8Cؗɦ[xBRaa5ŹLs`˖!PÝQK'AwCݧs&j)[Y}ٖ2O1jA%:*eKP^}sƎ* + =Rh(}"!>l Zw>e#Er+,Os|^RF A/-=$g,ݡ~1l40Bd)m'Aߚ1J,.kL>E' c~o o0\d{_$טd'\N f@U@{$X 8{'5?hcn5чJ>e/D{6U;fW9XG}[!q13a@,6W3whdy!fQiw*XEx_XfM A`̢\Y,qzc,}{&vndv˫ۂTļbŃ._E˗J2~^b8e203E@EA@.Y'&_]i< qy|a8z#6HRŜc#4/xPJyy7`1t=UCkaϸZpfDpG?A2$h(A5v67 NUocEUy{m%Mȗg0^<%"Ҹķ0UhUe;ZqqF$n}s9J(tV(a9\;I 7p:1vkYFmf:+w)N٥v/V+Lʿ3ATo&>IH&f誶*\sY;k[Yг1"& `Y{pK|EWe;%V4Z*Tۇ1b/"pA AKja q͌.j9U1[BG8#,d- sZLpt`oiU> )&Y9!.,RwRYPXC"FXlxln9۩3Y< je,e+6"v]۸6V>p#q7M|Z& M'i4xѭExq1PѵʉQ6hN&OeӦA"hd0ea1 mҎZk %j=Wt RR? G"b*Km~hW1/e9|sNnOZy UQV8_ʃQ['y$1,A98`rUX~܍@A,AAsYVjߘ7.i\L˩+e"HBhQh*{֫{/Yj*SM!dQzc:0ˌ9`~^ 56e&HVaX*uor;M*, hYi̻*0^a#ܫDފN: 8!x+k Xc*8>S0{\ Zô6.XP. B`sCZ?(ca K0K 1:ZE[.1,^;&:x*2{%; robTohV+g>zCNbmeawU+K0b8|=g*d4=ĨTRG~bj*) oAi0\EK 6"Tþ"l 4- vN>LA*{%ADXPDwao0Y}r0GȏZfw?Mܰ.iw.( S& 9UPo.sٜKo/><$UFx%071>F6KHq Dz\pC厭w% .*%`x8nұ,݌tTBext.rE.1vS UdA z4\k*LA.h{?IGDt)4XnBlĺvg},UܼKn̽^tgLnxJ9^3l"$aȁ LM/h;ʦz+%l5 ۫( ӵ8 z[.1uW8^ZoKswXKLb/ q"D= xD\b^}VWYL+dV̦h /p/,BDwTzo{!՝o苓f#kf࠱>ABl](ɨ' CfjhYi5aB A/1q )E(o2?Ɗ`{>6"Vdlt֮*x:Q`6dіZĿDW3z]#`4q*O䕝:i@Pr4xw-^+\9yA̴Y9&܉t +U_XPhq J dœ[_:Lo|!գ)kO4/2z0?!wO8o [>(jbT7/GcdGEc Md75!v BF<1,!*"3LtJK%NzBu OYG1bH{Kpeo%o a ʼney06&Lp5 hP^cXU{?1qLeÊ#}0[͑XWT<#+%K\SH0_I$UMҷAt#5<߆t >J=%SG#A>Jt*#m/D0O ހ~п ,W_P#H`.%-ۿL _+%7/*dZgYA~N|,H+3ƩO7~na0aWZZӱ>.6w@ TVm }BGDx%)dV4&0 f,4Khulpb\ӱ 3*Q0iUO([FO;NIED BII0_r1%l%o1v"09.!pkj4XRXpѝ|+6prŘn] n^R# U<!#(8Hiem - [N`J.T҉S" ROhk %8 u >)geQx`.q,qZ"i/e0>UqNJ\x @+rհnahG7yB!(D(̳-X'4f9[6;YP̦t35<]*%[ɇ]@nOD6#Nҽ^0yE^oh0`e;&-@yd(tx)1p'`R^E-5{Ga[_-9TեxL+m8ipV\rXqxE.ձwNupܶ9ycu)فR9:ҨMވj1Yj*!u]$\-l /£y\1i撬=Ls>Qiw`fT0dШimiX&e8TUv"( Eȯ#cpN,z0n2ZwYZP*A oga`@ Q/i -@蝪FZDM©_0 :\ΦuM\ E6V8ք GB@l|ah+Ȱ*Q'lE^fop] sYsnarX" CR%8h 䔥neIp3F0?0 hyv!^fji4eNK[x8Gj f%af/?c/ZK mW?K9A]!fvq-{h4(Q @+ZG嗟v\*,fEl^&8q[LP"rlj4 XZ;B"US l>).&. \P{)pfx2>/¬r/xx/F%Q_L|?!Fc|U_ n](N|B#P86Y蛁#agAEA18A)QxJGr.0T3W*̣]땊)*W IV]w"]Y .VS.9yT(հe3[ķc wTQ!|Nڌ\ZKxE :'v"ۊkUE3F\ g'uk,Q{45JᎾp*4J7rCe./5.a–-OlNF#+Ǹ*Ih+4{ 1%zhS<˛--,[9=S1q12˷`Hsc0S\ U}Y>X.Q)(7+5)Jw3eRkAv`s[@8weg\@5 -L@ o /1pV{Vrhde &Z b{.uu(Ec 72ؖdHg&4S-Ūyfd܊hhrܸw !ouZюoU2;`ٕX+rJRZ=Մُh6\@vąMψ:C0qIP"X9 5~.YT#DS_4\ :|8"OEs; Z*ٰ(G6gBPKߐ|{FdP3JI^ OxfeMܮG@oQ?vnR (cH ؐXm@~@Ǡ¶!EL7=VPUwx `/~1ZsL+F^* (t$SDKXwQ!aPM zŗvpj%=!h8%2FfzEiYBzO &bt hUñ#\+*d/+?nPap!N@F.ɖ{ a(%Ǚ B\b&t}gii[lG&6h<D;~.LӔ|dQ,;X4^kQl̉@5sXv0\#c!(mjYJB<76ŵ1U|. ZKffx3HD9) Icc.#H1e) ֡ܬ$]|O!x3r6c.m&88Hܗ+Dj@о&{0EQJiT8E QM/&g[oFO.[(jX$w$ݰ9:XMҸ!n%U-A@ ƒ6@~ |1H06T^ҎKGh ʦx~ݡ(]Z-Vbfod0'ZWlsC*4)8ahP#I%D\m=4 +>VM'ZHUFKwy](BQk - .2ϔT axUvz.YWX9ʨsacnC@385)_#ꇡNB0]Aġ,=&40 `'qolø ~+ R-]Q*OG4)!⢓B`= JwSU}پ,Xbcn\Me7'VL)bōm!>,ߊ_TA99P)Uce\STF=KpA FB,Xk[.qfgҟqݸjj: >b2m& [;z,0a;b D?3xhX7bʗ%p4{;#._15߷.T;oQq"'kaP^HװE#]F]V=t[)l=%e 3qnz/4; Uh JtFĺS[fV*,XF3Z@Rk4!ayr?˨9.ha a Jހb7<_اH ,uQ2y ;֭C\wz!106,F{y!ώP7D*w+bzIrOܵqK}6dDLO %,Sz')a SK2+%Ĥ7 *%5AЇ k EP8hdR[8-5Ƃ#d:dإJ卛{:[s{O":(d+ R]d] %Up7(EGs]#dǁ%7B›Hdp/w_ kjnY N1򂶷xH׶0 ɿy.W^y px{>!֤mmzT.wuM©!r xw^ݒKUT.5V0Ʌ aq w%Fyfj 7mK Kt'3UL.5,ɿ~mbĜMͳNp=1+f5Chbw\LȆ%$RRM#..9R炇?E!Db(;ɛٹ+x~ѱ&f#׉IND40JD[|/ /N V5T>%4k&]YcnR\,2p+QcK2<nW,̡RȬI6ylu$ |DmfK)-МSeA_æi;?iq&Vjterxc]q,YP\K`'Ld"&l~N +9uCaRmލR&oFpTFW١Z`]۟$uen"e~MYu}@{PmB\:B5( SDgR..)soc`"fy)^P!P:f3%`^J1jwHQ@*a _snpl>eCT S+'{.V U(1PXl@2AZ-|9yiW #O %w3k6afjJ;cM0yJ>FlQAPVS-賠86ja@$Z7eKf:?!k * xB cs̽UJ%+d|M,@ 8{scmÈW-65 KufrԸ K"(!^y?FeW@`lf~zYSg[T3f7@nez]C.0@]r,vX*w2 fj+tUC1^x{Ǹb;OB qG,ޣDEzj-`&lwءy ?gAĴ Cp゠#l 7g1{XU0.m7;0U\.RβUU0 [[Fp\"9@QqAlLveL兘-a+X ~O$Kdǖ:n!WhL؈-֏ܻ/\qR͌ÌZ8}I-jƘ`eK07!% /UɚnT",o(p~P-г&.~cJ#"@&_, ̂°ަe FT 9L o2p 2P+d`hg{vo_1-~cO1TOw K,L栂ޕ&D@u.٬ƊU.}ȚV4dU[pJ|ҖU dX¨̧Yȷ-UhDvѳaR0Y%obQT^pGȈ-K(Jdv -` ûw+D^ NϕR!M_IWGRЂ{ M%jNkFR[;G3 PwZ +/aEu>E#dyVf xXov7$%)ڹG)0zj#AjY mxFū D.2#"vp/p6=s(ܮQ悆X`m7XJȇgq`Ӄmka ̶M)RB`[ &-%kTӪ10q6 0z+#+f#A|$o%C?؏TWLXx؎TY6|Ԫa0@HH0Td ZVeArQ|m"4 >me,5; +DB(lR[̯$ P )BCD\`Mwa97b(&3h[tԁeQx(\$b#Bs 095BEуnWS8)|D=tЕPKh]-MXP2f#Rp:V's0vx<&=uiو# mm  s7M16` KdV(`ef<^ҸL[\"]1ޠ|0<^UycG$9?bˈXrbjhx @RsWKޭ6ЃW,pWf|j KU;\Y^a! M(.Xc*86 er+U'F_<]=q\30C Ҍ9.,Bs 2R͌J4 ǵHÃFYPGÌ3^̗`z3n l I4m̃v7Ohdr5* E& 5`_Mie3%hɉp1Z(k@*E'^<+uɉ]pCL[Y%TlDUt ;V']kp0]& \D(:&iu瘿Hmy/%^& ei-V,))> Z?e[4!ݓb)" W{+eӕ5y2,w,W9zK/B{f­|6 F&p+z{P鵗Rl<3{z*Ux+qa|"ysBu@zYD,9^K5K}P-艔K>f躋y/#2Gdqn` ^ )Kaǔ) \WB-90 ys2[Lfc|H*̭@IK95!t'4L2EM!21 kj92 @L̕ͅv0ӄ11|UpQ79En`1,g'yx (K k!0ґ:ROҞ{Ѐ0md=jEdۮ1 B%j Utn]^cmԤL5,‹cl5Z muzZ wK7uX 1mBO+k0q6L7V` sNa=HC:a4BÁCݿeͿ)y-4F@ H9Y,ړ!|  ,ض\j`(Ja}NNQ t,@q]EBPF.ES-ҡFF4{1-GSIjfuQz|3#3j.Fc8z1hGst옩(.UU 3xc v%,&UxC +B6=ܾOd802›KnnAo}XgF͢cϽ/N?1R>-+u^ ȍxUnC`UQvCw;_pT-0|~ 85[r>V7Jm{>(Ÿ%DSfŨ~ Dq$@ ˂pG8eU&6 xcbC6Y%%%0p!mh+G@a-P2-=ڵ+Mvek,H!*gy3ʀ2r% 3^B6(wP= 4)G4TZEH3V<[A@#!@>)vxa'/cmJ(Pa8^c7}" ʯ+9[/P\@@#PV]QmObC)`ܡ'}PŏiQ'6;h4kY%̳1"![18eq`áYi.D>yFg.Z?aIu`}B_yeVA 7UKA9ؠΎuN.a! *iAM-*F LiĬvܵ~vm>NH`KeSFY3B*cN2F#sw˖䬹AeYZ R\KX{׬v$.k ʿ3Ef֦'W=0T_Kck^n-ZB0\RJ ReA%u5P ɫ ߃ kɹ_l m p,edgS{m{s ,hzki͡y-7͑ m+=)xSp{gG`XJcU9fhbL@4. ng\fgţl~&,&6E-n,&B LejQ Fy4TZ6_RR`t^5 4i棣}9鰘"O,f?LYA˜y]) ]+0gQBI FqU/]ыx0zL)%P3Ig̼.) 12W%\j~JٚK mZal٧a @jWC/71 L+eU,<L5dR,69ơ+Zn? rȌ.+)2CAR#;25< @;=1O67:Y"~5I%]8UċBk0ǥv&Wj8PXJ,68HY;U~SGJ~dꩤyEL֒T/yd ŰǴh18\Rf$Ӝ~V 4l֌*6é<}"u(c xavf ۹:%% %؏sf1#1!oZ_8\`T֮Xg&lC`ULP9MLFt}lk\@+Mʈ1x(K3b-&Ҕj6@`!QV.Xl4>Ax啇6URLD6r7KkԲM/u TDA/k6@Q5QY a*6Xg +nԠ">pK3Q.8qMl.*/G0O`jyߋF[W.<\Tqh8MHY#7]ŀi4"a;qG Nw;%F6FXSWuf1_ht+X9IzJNjS`H+meyb7 1^I_ Zns/ ;-2 Jlo.30.w=_5R(Wph袹L:/1_k6h-# &4@s?PF0R(s'"8NLq5TSHMʱV ᴄ Zv%8jxQ*E,(9EjhةH m7x'.L@lpZ`\Qa,Y,65k6g^ˤe`K>'.Vrfq LJ М6isV*}0Q;Eo)W̒jзm wJ-0%w?A tj7S$q^if.LF  Ma!0ۺOИtèXZ$)g v}m? *>e\Ee>3V>PU߂)v0]ַ0#L9WٌTBq[m_|{㢚Jȵ T[e 8VܬjR^ TF4 hdlcdp b[j^^%L7pzfQ>udAc~tPc3TA¯n{Q2q~ 9VK:T@aL/pL0,L:eo!* Jh.jR󽌤n@>%%%TA.23<Ŏ Vn?fHm1dSLüe^Ⱥ+p2(cظ4myaaZh^:CI䀛unr4$6֌;FXuBzc?3FǵyHr=6?*=Vd'## =1 JeB[oJ(Pji&ܥ[dFTyDP!:S:[Hp@t!?drߕJnʌÍ1=Qh'Q>VXj":ˇTXd@HfX Q7+!~:'J1Fd̞` )hӥ%* )fO  ,%j\-~Fzad3/KYEky'.˦4%\/.<U*4)enlX..>hip&Y@ɔ+TUƌqTńܭm xauyn8ͽ՚fƽRiO7cN <N\O*R\W剪6S^;p+G33FEb{YXU|ehG<" v(T¥1J]!w"81FjUN#-;́?U 2Ytw&#)` $I.@4\JhʔpVXN&Ռ!~ C MC}+
Linux 4gvps.4gvps.com 3.10.0-1127.18.2.vz7.163.46 #1 SMP Fri Nov 20 21:47:55 MSK 2020 x86_64
  SOFT : Apache PHP : 7.4.33
/opt/alt/python38/lib64/python3.8/__pycache__/
38.135.39.45

 
[ NAME ] [ SIZE ] [ PERM ] [ DATE ] [ ACT ]
+FILE +DIR
__future__.cpython-38.opt-1.pyc 4.075 KB -rw-r--r-- 2022-04-22 10:25 R E G D
__future__.cpython-38.opt-2.pyc 2.149 KB -rw-r--r-- 2022-04-22 10:25 R E G D
__future__.cpython-38.pyc 4.075 KB -rw-r--r-- 2022-04-22 10:25 R E G D
__phello__.foo.cpython-38.opt-1.pyc 0.139 KB -rw-r--r-- 2022-04-22 10:25 R E G D
__phello__.foo.cpython-38.opt-2.pyc 0.139 KB -rw-r--r-- 2022-04-22 10:25 R E G D
__phello__.foo.cpython-38.pyc 0.139 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_bootlocale.cpython-38.opt-1.pyc 1.203 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_bootlocale.cpython-38.opt-2.pyc 0.983 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_bootlocale.cpython-38.pyc 1.229 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_collections_abc.cpython-38.opt-1.pyc 28.082 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_collections_abc.cpython-38.opt-2.pyc 23.142 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_collections_abc.cpython-38.pyc 28.082 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_compat_pickle.cpython-38.opt-1.pyc 5.33 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_compat_pickle.cpython-38.opt-2.pyc 5.33 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_compat_pickle.cpython-38.pyc 5.387 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_compression.cpython-38.opt-1.pyc 4.063 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_compression.cpython-38.opt-2.pyc 3.854 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_compression.cpython-38.pyc 4.063 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_dummy_thread.cpython-38.opt-1.pyc 5.91 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_dummy_thread.cpython-38.opt-2.pyc 3.327 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_dummy_thread.cpython-38.pyc 5.91 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_markupbase.cpython-38.opt-1.pyc 7.454 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_markupbase.cpython-38.opt-2.pyc 7.085 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_markupbase.cpython-38.pyc 7.622 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_osx_support.cpython-38.opt-1.pyc 11.336 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_osx_support.cpython-38.opt-2.pyc 8.708 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_osx_support.cpython-38.pyc 11.336 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_py_abc.cpython-38.opt-1.pyc 4.538 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_py_abc.cpython-38.opt-2.pyc 3.354 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_py_abc.cpython-38.pyc 4.575 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_pydecimal.cpython-38.opt-1.pyc 156.982 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_pydecimal.cpython-38.opt-2.pyc 77.278 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_pydecimal.cpython-38.pyc 156.982 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_pyio.cpython-38.opt-1.pyc 72.338 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_pyio.cpython-38.opt-2.pyc 49.981 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_pyio.cpython-38.pyc 72.357 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sitebuiltins.cpython-38.opt-1.pyc 3.414 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sitebuiltins.cpython-38.opt-2.pyc 2.902 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sitebuiltins.cpython-38.pyc 3.414 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_strptime.cpython-38.opt-1.pyc 15.683 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_strptime.cpython-38.opt-2.pyc 12.042 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_strptime.cpython-38.pyc 15.683 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sysconfigdata__linux_x86_64-linux-gnu.cpython-38.opt-1.pyc 28.001 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sysconfigdata__linux_x86_64-linux-gnu.cpython-38.opt-2.pyc 28.001 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sysconfigdata__linux_x86_64-linux-gnu.cpython-38.pyc 28.001 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-38.opt-1.pyc 27.866 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-38.opt-2.pyc 27.866 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-38.pyc 27.866 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_threading_local.cpython-38.opt-1.pyc 6.31 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_threading_local.cpython-38.opt-2.pyc 3.067 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_threading_local.cpython-38.pyc 6.31 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_weakrefset.cpython-38.opt-1.pyc 7.437 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_weakrefset.cpython-38.opt-2.pyc 7.437 KB -rw-r--r-- 2022-04-22 10:25 R E G D
_weakrefset.cpython-38.pyc 7.437 KB -rw-r--r-- 2022-04-22 10:25 R E G D
abc.cpython-38.opt-1.pyc 5.224 KB -rw-r--r-- 2022-04-22 10:25 R E G D
abc.cpython-38.opt-2.pyc 3.151 KB -rw-r--r-- 2022-04-22 10:25 R E G D
abc.cpython-38.pyc 5.224 KB -rw-r--r-- 2022-04-22 10:25 R E G D
aifc.cpython-38.opt-1.pyc 24.892 KB -rw-r--r-- 2022-04-22 10:25 R E G D
aifc.cpython-38.opt-2.pyc 19.807 KB -rw-r--r-- 2022-04-22 10:25 R E G D
aifc.cpython-38.pyc 24.892 KB -rw-r--r-- 2022-04-22 10:25 R E G D
antigravity.cpython-38.opt-1.pyc 0.793 KB -rw-r--r-- 2022-04-22 10:25 R E G D
antigravity.cpython-38.opt-2.pyc 0.652 KB -rw-r--r-- 2022-04-22 10:25 R E G D
antigravity.cpython-38.pyc 0.793 KB -rw-r--r-- 2022-04-22 10:25 R E G D
argparse.cpython-38.opt-1.pyc 60.687 KB -rw-r--r-- 2022-04-22 10:25 R E G D
argparse.cpython-38.opt-2.pyc 51.662 KB -rw-r--r-- 2022-04-22 10:25 R E G D
argparse.cpython-38.pyc 60.832 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ast.cpython-38.opt-1.pyc 16.351 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ast.cpython-38.opt-2.pyc 10.105 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ast.cpython-38.pyc 16.385 KB -rw-r--r-- 2022-04-22 10:25 R E G D
asynchat.cpython-38.opt-1.pyc 6.705 KB -rw-r--r-- 2022-04-22 10:25 R E G D
asynchat.cpython-38.opt-2.pyc 5.362 KB -rw-r--r-- 2022-04-22 10:25 R E G D
asynchat.cpython-38.pyc 6.705 KB -rw-r--r-- 2022-04-22 10:25 R E G D
asyncore.cpython-38.opt-1.pyc 15.667 KB -rw-r--r-- 2022-04-22 10:25 R E G D
asyncore.cpython-38.opt-2.pyc 14.491 KB -rw-r--r-- 2022-04-22 10:25 R E G D
asyncore.cpython-38.pyc 15.667 KB -rw-r--r-- 2022-04-22 10:25 R E G D
base64.cpython-38.opt-1.pyc 16.526 KB -rw-r--r-- 2022-04-22 10:25 R E G D
base64.cpython-38.opt-2.pyc 11.073 KB -rw-r--r-- 2022-04-22 10:25 R E G D
base64.cpython-38.pyc 16.686 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bdb.cpython-38.opt-1.pyc 24.352 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bdb.cpython-38.opt-2.pyc 15.525 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bdb.cpython-38.pyc 24.352 KB -rw-r--r-- 2022-04-22 10:25 R E G D
binhex.cpython-38.opt-1.pyc 11.864 KB -rw-r--r-- 2022-04-22 10:25 R E G D
binhex.cpython-38.opt-2.pyc 11.344 KB -rw-r--r-- 2022-04-22 10:25 R E G D
binhex.cpython-38.pyc 11.864 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bisect.cpython-38.opt-1.pyc 2.313 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bisect.cpython-38.opt-2.pyc 1.032 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bisect.cpython-38.pyc 2.313 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bz2.cpython-38.opt-1.pyc 11.191 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bz2.cpython-38.opt-2.pyc 6.252 KB -rw-r--r-- 2022-04-22 10:25 R E G D
bz2.cpython-38.pyc 11.191 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cProfile.cpython-38.opt-1.pyc 5.366 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cProfile.cpython-38.opt-2.pyc 4.916 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cProfile.cpython-38.pyc 5.366 KB -rw-r--r-- 2022-04-22 10:25 R E G D
calendar.cpython-38.opt-1.pyc 26.444 KB -rw-r--r-- 2022-04-22 10:25 R E G D
calendar.cpython-38.opt-2.pyc 21.96 KB -rw-r--r-- 2022-04-22 10:25 R E G D
calendar.cpython-38.pyc 26.444 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cgi.cpython-38.opt-1.pyc 25.937 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cgi.cpython-38.opt-2.pyc 17.708 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cgi.cpython-38.pyc 25.937 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cgitb.cpython-38.opt-1.pyc 9.927 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cgitb.cpython-38.opt-2.pyc 8.365 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cgitb.cpython-38.pyc 9.927 KB -rw-r--r-- 2022-04-22 10:25 R E G D
chunk.cpython-38.opt-1.pyc 4.74 KB -rw-r--r-- 2022-04-22 10:25 R E G D
chunk.cpython-38.opt-2.pyc 2.646 KB -rw-r--r-- 2022-04-22 10:25 R E G D
chunk.cpython-38.pyc 4.74 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cmd.cpython-38.opt-1.pyc 12.345 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cmd.cpython-38.opt-2.pyc 7.047 KB -rw-r--r-- 2022-04-22 10:25 R E G D
cmd.cpython-38.pyc 12.345 KB -rw-r--r-- 2022-04-22 10:25 R E G D
code.cpython-38.opt-1.pyc 9.695 KB -rw-r--r-- 2022-04-22 10:25 R E G D
code.cpython-38.opt-2.pyc 4.548 KB -rw-r--r-- 2022-04-22 10:25 R E G D
code.cpython-38.pyc 9.695 KB -rw-r--r-- 2022-04-22 10:25 R E G D
codecs.cpython-38.opt-1.pyc 33.175 KB -rw-r--r-- 2022-04-22 10:25 R E G D
codecs.cpython-38.opt-2.pyc 17.974 KB -rw-r--r-- 2022-04-22 10:25 R E G D
codecs.cpython-38.pyc 33.175 KB -rw-r--r-- 2022-04-22 10:25 R E G D
codeop.cpython-38.opt-1.pyc 6.281 KB -rw-r--r-- 2022-04-22 10:25 R E G D
codeop.cpython-38.opt-2.pyc 2.316 KB -rw-r--r-- 2022-04-22 10:25 R E G D
codeop.cpython-38.pyc 6.281 KB -rw-r--r-- 2022-04-22 10:25 R E G D
colorsys.cpython-38.opt-1.pyc 3.179 KB -rw-r--r-- 2022-04-22 10:25 R E G D
colorsys.cpython-38.opt-2.pyc 2.587 KB -rw-r--r-- 2022-04-22 10:25 R E G D
colorsys.cpython-38.pyc 3.179 KB -rw-r--r-- 2022-04-22 10:25 R E G D
compileall.cpython-38.opt-1.pyc 9.204 KB -rw-r--r-- 2022-04-22 10:25 R E G D
compileall.cpython-38.opt-2.pyc 6.885 KB -rw-r--r-- 2022-04-22 10:25 R E G D
compileall.cpython-38.pyc 9.204 KB -rw-r--r-- 2022-04-22 10:25 R E G D
configparser.cpython-38.opt-1.pyc 44.661 KB -rw-r--r-- 2022-04-22 10:25 R E G D
configparser.cpython-38.opt-2.pyc 30.085 KB -rw-r--r-- 2022-04-22 10:25 R E G D
configparser.cpython-38.pyc 44.661 KB -rw-r--r-- 2022-04-22 10:25 R E G D
contextlib.cpython-38.opt-1.pyc 19.718 KB -rw-r--r-- 2022-04-22 10:25 R E G D
contextlib.cpython-38.opt-2.pyc 14.269 KB -rw-r--r-- 2022-04-22 10:25 R E G D
contextlib.cpython-38.pyc 19.77 KB -rw-r--r-- 2022-04-22 10:25 R E G D
contextvars.cpython-38.opt-1.pyc 0.252 KB -rw-r--r-- 2022-04-22 10:25 R E G D
contextvars.cpython-38.opt-2.pyc 0.252 KB -rw-r--r-- 2022-04-22 10:25 R E G D
contextvars.cpython-38.pyc 0.252 KB -rw-r--r-- 2022-04-22 10:25 R E G D
copy.cpython-38.opt-1.pyc 6.838 KB -rw-r--r-- 2022-04-22 10:25 R E G D
copy.cpython-38.opt-2.pyc 4.578 KB -rw-r--r-- 2022-04-22 10:25 R E G D
copy.cpython-38.pyc 6.838 KB -rw-r--r-- 2022-04-22 10:25 R E G D
copyreg.cpython-38.opt-1.pyc 4.197 KB -rw-r--r-- 2022-04-22 10:25 R E G D
copyreg.cpython-38.opt-2.pyc 3.414 KB -rw-r--r-- 2022-04-22 10:25 R E G D
copyreg.cpython-38.pyc 4.231 KB -rw-r--r-- 2022-04-22 10:25 R E G D
crypt.cpython-38.opt-1.pyc 3.322 KB -rw-r--r-- 2022-04-22 10:25 R E G D
crypt.cpython-38.opt-2.pyc 2.676 KB -rw-r--r-- 2022-04-22 10:25 R E G D
crypt.cpython-38.pyc 3.322 KB -rw-r--r-- 2022-04-22 10:25 R E G D
csv.cpython-38.opt-1.pyc 11.646 KB -rw-r--r-- 2022-04-22 10:25 R E G D
csv.cpython-38.opt-2.pyc 9.654 KB -rw-r--r-- 2022-04-22 10:25 R E G D
csv.cpython-38.pyc 11.646 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dataclasses.cpython-38.opt-1.pyc 23.113 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dataclasses.cpython-38.opt-2.pyc 19.754 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dataclasses.cpython-38.pyc 23.113 KB -rw-r--r-- 2022-04-22 10:25 R E G D
datetime.cpython-38.opt-1.pyc 54.64 KB -rw-r--r-- 2022-04-22 10:25 R E G D
datetime.cpython-38.opt-2.pyc 46.397 KB -rw-r--r-- 2022-04-22 10:25 R E G D
datetime.cpython-38.pyc 55.848 KB -rw-r--r-- 2022-04-22 10:25 R E G D
decimal.cpython-38.opt-1.pyc 0.365 KB -rw-r--r-- 2022-04-22 10:25 R E G D
decimal.cpython-38.opt-2.pyc 0.365 KB -rw-r--r-- 2022-04-22 10:25 R E G D
decimal.cpython-38.pyc 0.365 KB -rw-r--r-- 2022-04-22 10:25 R E G D
difflib.cpython-38.opt-1.pyc 58.022 KB -rw-r--r-- 2022-04-22 10:25 R E G D
difflib.cpython-38.opt-2.pyc 24.352 KB -rw-r--r-- 2022-04-22 10:25 R E G D
difflib.cpython-38.pyc 58.06 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dis.cpython-38.opt-1.pyc 15.452 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dis.cpython-38.opt-2.pyc 11.734 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dis.cpython-38.pyc 15.452 KB -rw-r--r-- 2022-04-22 10:25 R E G D
doctest.cpython-38.opt-1.pyc 73.971 KB -rw-r--r-- 2022-04-22 10:25 R E G D
doctest.cpython-38.opt-2.pyc 39.492 KB -rw-r--r-- 2022-04-22 10:25 R E G D
doctest.cpython-38.pyc 74.208 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dummy_threading.cpython-38.opt-1.pyc 1.099 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dummy_threading.cpython-38.opt-2.pyc 0.734 KB -rw-r--r-- 2022-04-22 10:25 R E G D
dummy_threading.cpython-38.pyc 1.099 KB -rw-r--r-- 2022-04-22 10:25 R E G D
enum.cpython-38.opt-1.pyc 25.368 KB -rw-r--r-- 2022-04-22 10:25 R E G D
enum.cpython-38.opt-2.pyc 20.562 KB -rw-r--r-- 2022-04-22 10:25 R E G D
enum.cpython-38.pyc 25.368 KB -rw-r--r-- 2022-04-22 10:25 R E G D
filecmp.cpython-38.opt-1.pyc 8.244 KB -rw-r--r-- 2022-04-22 10:25 R E G D
filecmp.cpython-38.opt-2.pyc 5.888 KB -rw-r--r-- 2022-04-22 10:25 R E G D
filecmp.cpython-38.pyc 8.244 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fileinput.cpython-38.opt-1.pyc 13.074 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fileinput.cpython-38.opt-2.pyc 7.598 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fileinput.cpython-38.pyc 13.074 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fnmatch.cpython-38.opt-1.pyc 3.291 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fnmatch.cpython-38.opt-2.pyc 2.111 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fnmatch.cpython-38.pyc 3.291 KB -rw-r--r-- 2022-04-22 10:25 R E G D
formatter.cpython-38.opt-1.pyc 17.148 KB -rw-r--r-- 2022-04-22 10:25 R E G D
formatter.cpython-38.opt-2.pyc 14.766 KB -rw-r--r-- 2022-04-22 10:25 R E G D
formatter.cpython-38.pyc 17.148 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fractions.cpython-38.opt-1.pyc 18.314 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fractions.cpython-38.opt-2.pyc 11.104 KB -rw-r--r-- 2022-04-22 10:25 R E G D
fractions.cpython-38.pyc 18.314 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ftplib.cpython-38.opt-1.pyc 27.365 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ftplib.cpython-38.opt-2.pyc 17.801 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ftplib.cpython-38.pyc 27.365 KB -rw-r--r-- 2022-04-22 10:25 R E G D
functools.cpython-38.opt-1.pyc 27.262 KB -rw-r--r-- 2022-04-22 10:25 R E G D
functools.cpython-38.opt-2.pyc 20.765 KB -rw-r--r-- 2022-04-22 10:25 R E G D
functools.cpython-38.pyc 27.262 KB -rw-r--r-- 2022-04-22 10:25 R E G D
genericpath.cpython-38.opt-1.pyc 3.922 KB -rw-r--r-- 2022-04-22 10:25 R E G D
genericpath.cpython-38.opt-2.pyc 2.813 KB -rw-r--r-- 2022-04-22 10:25 R E G D
genericpath.cpython-38.pyc 3.922 KB -rw-r--r-- 2022-04-22 10:25 R E G D
getopt.cpython-38.opt-1.pyc 6.105 KB -rw-r--r-- 2022-04-22 10:25 R E G D
getopt.cpython-38.opt-2.pyc 3.611 KB -rw-r--r-- 2022-04-22 10:25 R E G D
getopt.cpython-38.pyc 6.139 KB -rw-r--r-- 2022-04-22 10:25 R E G D
getpass.cpython-38.opt-1.pyc 4.095 KB -rw-r--r-- 2022-04-22 10:25 R E G D
getpass.cpython-38.opt-2.pyc 2.938 KB -rw-r--r-- 2022-04-22 10:25 R E G D
getpass.cpython-38.pyc 4.095 KB -rw-r--r-- 2022-04-22 10:25 R E G D
gettext.cpython-38.opt-1.pyc 17.479 KB -rw-r--r-- 2022-04-22 10:25 R E G D
gettext.cpython-38.opt-2.pyc 16.804 KB -rw-r--r-- 2022-04-22 10:25 R E G D
gettext.cpython-38.pyc 17.479 KB -rw-r--r-- 2022-04-22 10:25 R E G D
glob.cpython-38.opt-1.pyc 4.192 KB -rw-r--r-- 2022-04-22 10:25 R E G D
glob.cpython-38.opt-2.pyc 3.353 KB -rw-r--r-- 2022-04-22 10:25 R E G D
glob.cpython-38.pyc 4.256 KB -rw-r--r-- 2022-04-22 10:25 R E G D
gzip.cpython-38.opt-1.pyc 17.772 KB -rw-r--r-- 2022-04-22 10:25 R E G D
gzip.cpython-38.opt-2.pyc 13.995 KB -rw-r--r-- 2022-04-22 10:25 R E G D
gzip.cpython-38.pyc 17.772 KB -rw-r--r-- 2022-04-22 10:25 R E G D
hashlib.cpython-38.opt-1.pyc 6.584 KB -rw-r--r-- 2022-04-22 10:25 R E G D
hashlib.cpython-38.opt-2.pyc 6.029 KB -rw-r--r-- 2022-04-22 10:25 R E G D
hashlib.cpython-38.pyc 6.584 KB -rw-r--r-- 2022-04-22 10:25 R E G D
heapq.cpython-38.opt-1.pyc 13.755 KB -rw-r--r-- 2022-04-22 10:25 R E G D
heapq.cpython-38.opt-2.pyc 10.81 KB -rw-r--r-- 2022-04-22 10:25 R E G D
heapq.cpython-38.pyc 13.755 KB -rw-r--r-- 2022-04-22 10:25 R E G D
hmac.cpython-38.opt-1.pyc 6.253 KB -rw-r--r-- 2022-04-22 10:25 R E G D
hmac.cpython-38.opt-2.pyc 3.795 KB -rw-r--r-- 2022-04-22 10:25 R E G D
hmac.cpython-38.pyc 6.253 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imaplib.cpython-38.opt-1.pyc 38.256 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imaplib.cpython-38.opt-2.pyc 26.56 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imaplib.cpython-38.pyc 40.388 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imghdr.cpython-38.opt-1.pyc 4.036 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imghdr.cpython-38.opt-2.pyc 3.729 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imghdr.cpython-38.pyc 4.036 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imp.cpython-38.opt-1.pyc 9.594 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imp.cpython-38.opt-2.pyc 7.284 KB -rw-r--r-- 2022-04-22 10:25 R E G D
imp.cpython-38.pyc 9.594 KB -rw-r--r-- 2022-04-22 10:25 R E G D
inspect.cpython-38.opt-1.pyc 78.44 KB -rw-r--r-- 2022-04-22 10:25 R E G D
inspect.cpython-38.opt-2.pyc 53.916 KB -rw-r--r-- 2022-04-22 10:25 R E G D
inspect.cpython-38.pyc 78.719 KB -rw-r--r-- 2022-04-22 10:25 R E G D
io.cpython-38.opt-1.pyc 3.388 KB -rw-r--r-- 2022-04-22 10:25 R E G D
io.cpython-38.opt-2.pyc 1.934 KB -rw-r--r-- 2022-04-22 10:25 R E G D
io.cpython-38.pyc 3.388 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ipaddress.cpython-38.opt-1.pyc 58.586 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ipaddress.cpython-38.opt-2.pyc 35.305 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ipaddress.cpython-38.pyc 58.586 KB -rw-r--r-- 2022-04-22 10:25 R E G D
keyword.cpython-38.opt-1.pyc 0.989 KB -rw-r--r-- 2022-04-22 10:25 R E G D
keyword.cpython-38.opt-2.pyc 0.572 KB -rw-r--r-- 2022-04-22 10:25 R E G D
keyword.cpython-38.pyc 0.989 KB -rw-r--r-- 2022-04-22 10:25 R E G D
linecache.cpython-38.opt-1.pyc 3.791 KB -rw-r--r-- 2022-04-22 10:25 R E G D
linecache.cpython-38.opt-2.pyc 2.712 KB -rw-r--r-- 2022-04-22 10:25 R E G D
linecache.cpython-38.pyc 3.791 KB -rw-r--r-- 2022-04-22 10:25 R E G D
locale.cpython-38.opt-1.pyc 33.891 KB -rw-r--r-- 2022-04-22 10:25 R E G D
locale.cpython-38.opt-2.pyc 29.384 KB -rw-r--r-- 2022-04-22 10:25 R E G D
locale.cpython-38.pyc 33.891 KB -rw-r--r-- 2022-04-22 10:25 R E G D
lzma.cpython-38.opt-1.pyc 11.751 KB -rw-r--r-- 2022-04-22 10:25 R E G D
lzma.cpython-38.opt-2.pyc 5.727 KB -rw-r--r-- 2022-04-22 10:25 R E G D
lzma.cpython-38.pyc 11.751 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mailbox.cpython-38.opt-1.pyc 58.788 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mailbox.cpython-38.opt-2.pyc 52.341 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mailbox.cpython-38.pyc 58.866 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mailcap.cpython-38.opt-1.pyc 6.339 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mailcap.cpython-38.opt-2.pyc 4.858 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mailcap.cpython-38.pyc 6.339 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mimetypes.cpython-38.opt-1.pyc 15.67 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mimetypes.cpython-38.opt-2.pyc 9.796 KB -rw-r--r-- 2022-04-22 10:25 R E G D
mimetypes.cpython-38.pyc 15.67 KB -rw-r--r-- 2022-04-22 10:25 R E G D
modulefinder.cpython-38.opt-1.pyc 15.691 KB -rw-r--r-- 2022-04-22 10:25 R E G D
modulefinder.cpython-38.opt-2.pyc 14.804 KB -rw-r--r-- 2022-04-22 10:25 R E G D
modulefinder.cpython-38.pyc 15.752 KB -rw-r--r-- 2022-04-22 10:25 R E G D
netrc.cpython-38.opt-1.pyc 3.703 KB -rw-r--r-- 2022-04-22 10:25 R E G D
netrc.cpython-38.opt-2.pyc 3.471 KB -rw-r--r-- 2022-04-22 10:25 R E G D
netrc.cpython-38.pyc 3.703 KB -rw-r--r-- 2022-04-22 10:25 R E G D
nntplib.cpython-38.opt-1.pyc 33.192 KB -rw-r--r-- 2022-04-22 10:25 R E G D
nntplib.cpython-38.opt-2.pyc 20.976 KB -rw-r--r-- 2022-04-22 10:25 R E G D
nntplib.cpython-38.pyc 33.192 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ntpath.cpython-38.opt-1.pyc 14.328 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ntpath.cpython-38.opt-2.pyc 12.325 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ntpath.cpython-38.pyc 14.328 KB -rw-r--r-- 2022-04-22 10:25 R E G D
nturl2path.cpython-38.opt-1.pyc 1.718 KB -rw-r--r-- 2022-04-22 10:25 R E G D
nturl2path.cpython-38.opt-2.pyc 1.309 KB -rw-r--r-- 2022-04-22 10:25 R E G D
nturl2path.cpython-38.pyc 1.718 KB -rw-r--r-- 2022-04-22 10:25 R E G D
numbers.cpython-38.opt-1.pyc 11.931 KB -rw-r--r-- 2022-04-22 10:25 R E G D
numbers.cpython-38.opt-2.pyc 8.158 KB -rw-r--r-- 2022-04-22 10:25 R E G D
numbers.cpython-38.pyc 11.931 KB -rw-r--r-- 2022-04-22 10:25 R E G D
opcode.cpython-38.opt-1.pyc 5.308 KB -rw-r--r-- 2022-04-22 10:25 R E G D
opcode.cpython-38.opt-2.pyc 5.171 KB -rw-r--r-- 2022-04-22 10:25 R E G D
opcode.cpython-38.pyc 5.308 KB -rw-r--r-- 2022-04-22 10:25 R E G D
operator.cpython-38.opt-1.pyc 13.385 KB -rw-r--r-- 2022-04-22 10:25 R E G D
operator.cpython-38.opt-2.pyc 11.071 KB -rw-r--r-- 2022-04-22 10:25 R E G D
operator.cpython-38.pyc 13.385 KB -rw-r--r-- 2022-04-22 10:25 R E G D
optparse.cpython-38.opt-1.pyc 46.864 KB -rw-r--r-- 2022-04-22 10:25 R E G D
optparse.cpython-38.opt-2.pyc 34.838 KB -rw-r--r-- 2022-04-22 10:25 R E G D
optparse.cpython-38.pyc 46.945 KB -rw-r--r-- 2022-04-22 10:25 R E G D
os.cpython-38.opt-1.pyc 30.645 KB -rw-r--r-- 2022-04-22 10:25 R E G D
os.cpython-38.opt-2.pyc 18.739 KB -rw-r--r-- 2022-04-22 10:25 R E G D
os.cpython-38.pyc 30.676 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pathlib.cpython-38.opt-1.pyc 43.188 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pathlib.cpython-38.opt-2.pyc 34.711 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pathlib.cpython-38.pyc 43.188 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pdb.cpython-38.opt-1.pyc 46.08 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pdb.cpython-38.opt-2.pyc 32.339 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pdb.cpython-38.pyc 46.134 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pickle.cpython-38.opt-1.pyc 45.709 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pickle.cpython-38.opt-2.pyc 39.975 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pickle.cpython-38.pyc 45.823 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pickletools.cpython-38.opt-1.pyc 64.774 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pickletools.cpython-38.opt-2.pyc 55.895 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pickletools.cpython-38.pyc 65.644 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pipes.cpython-38.opt-1.pyc 7.627 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pipes.cpython-38.opt-2.pyc 4.827 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pipes.cpython-38.pyc 7.627 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pkgutil.cpython-38.opt-1.pyc 15.968 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pkgutil.cpython-38.opt-2.pyc 10.835 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pkgutil.cpython-38.pyc 15.968 KB -rw-r--r-- 2022-04-22 10:25 R E G D
platform.cpython-38.opt-1.pyc 23.771 KB -rw-r--r-- 2022-04-22 10:25 R E G D
platform.cpython-38.opt-2.pyc 16.079 KB -rw-r--r-- 2022-04-22 10:25 R E G D
platform.cpython-38.pyc 23.771 KB -rw-r--r-- 2022-04-22 10:25 R E G D
plistlib.cpython-38.opt-1.pyc 26.478 KB -rw-r--r-- 2022-04-22 10:25 R E G D
plistlib.cpython-38.opt-2.pyc 23.5 KB -rw-r--r-- 2022-04-22 10:25 R E G D
plistlib.cpython-38.pyc 26.543 KB -rw-r--r-- 2022-04-22 10:25 R E G D
poplib.cpython-38.opt-1.pyc 13.158 KB -rw-r--r-- 2022-04-22 10:25 R E G D
poplib.cpython-38.opt-2.pyc 8.343 KB -rw-r--r-- 2022-04-22 10:25 R E G D
poplib.cpython-38.pyc 13.158 KB -rw-r--r-- 2022-04-22 10:25 R E G D
posixpath.cpython-38.opt-1.pyc 10.198 KB -rw-r--r-- 2022-04-22 10:25 R E G D
posixpath.cpython-38.opt-2.pyc 8.523 KB -rw-r--r-- 2022-04-22 10:25 R E G D
posixpath.cpython-38.pyc 10.198 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pprint.cpython-38.opt-1.pyc 15.866 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pprint.cpython-38.opt-2.pyc 13.762 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pprint.cpython-38.pyc 15.914 KB -rw-r--r-- 2022-04-22 10:25 R E G D
profile.cpython-38.opt-1.pyc 14.219 KB -rw-r--r-- 2022-04-22 10:25 R E G D
profile.cpython-38.opt-2.pyc 11.311 KB -rw-r--r-- 2022-04-22 10:25 R E G D
profile.cpython-38.pyc 14.427 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pstats.cpython-38.opt-1.pyc 21.563 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pstats.cpython-38.opt-2.pyc 19.099 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pstats.cpython-38.pyc 21.563 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pty.cpython-38.opt-1.pyc 3.877 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pty.cpython-38.opt-2.pyc 3.052 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pty.cpython-38.pyc 3.877 KB -rw-r--r-- 2022-04-22 10:25 R E G D
py_compile.cpython-38.opt-1.pyc 7.226 KB -rw-r--r-- 2022-04-22 10:25 R E G D
py_compile.cpython-38.opt-2.pyc 3.575 KB -rw-r--r-- 2022-04-22 10:25 R E G D
py_compile.cpython-38.pyc 7.226 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pyclbr.cpython-38.opt-1.pyc 10.221 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pyclbr.cpython-38.opt-2.pyc 6.704 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pyclbr.cpython-38.pyc 10.221 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pydoc.cpython-38.opt-1.pyc 81.491 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pydoc.cpython-38.opt-2.pyc 72.17 KB -rw-r--r-- 2022-04-22 10:25 R E G D
pydoc.cpython-38.pyc 81.543 KB -rw-r--r-- 2022-04-22 10:25 R E G D
queue.cpython-38.opt-1.pyc 10.392 KB -rw-r--r-- 2022-04-22 10:25 R E G D
queue.cpython-38.opt-2.pyc 6.156 KB -rw-r--r-- 2022-04-22 10:25 R E G D
queue.cpython-38.pyc 10.392 KB -rw-r--r-- 2022-04-22 10:25 R E G D
quopri.cpython-38.opt-1.pyc 5.457 KB -rw-r--r-- 2022-04-22 10:25 R E G D
quopri.cpython-38.opt-2.pyc 4.445 KB -rw-r--r-- 2022-04-22 10:25 R E G D
quopri.cpython-38.pyc 5.628 KB -rw-r--r-- 2022-04-22 10:25 R E G D
random.cpython-38.opt-1.pyc 19.651 KB -rw-r--r-- 2022-04-22 10:25 R E G D
random.cpython-38.opt-2.pyc 12.839 KB -rw-r--r-- 2022-04-22 10:25 R E G D
random.cpython-38.pyc 19.651 KB -rw-r--r-- 2022-04-22 10:25 R E G D
re.cpython-38.opt-1.pyc 14.099 KB -rw-r--r-- 2022-04-22 10:25 R E G D
re.cpython-38.opt-2.pyc 5.956 KB -rw-r--r-- 2022-04-22 10:25 R E G D
re.cpython-38.pyc 14.099 KB -rw-r--r-- 2022-04-22 10:25 R E G D
reprlib.cpython-38.opt-1.pyc 5.193 KB -rw-r--r-- 2022-04-22 10:25 R E G D
reprlib.cpython-38.opt-2.pyc 5.041 KB -rw-r--r-- 2022-04-22 10:25 R E G D
reprlib.cpython-38.pyc 5.193 KB -rw-r--r-- 2022-04-22 10:25 R E G D
rlcompleter.cpython-38.opt-1.pyc 5.635 KB -rw-r--r-- 2022-04-22 10:25 R E G D
rlcompleter.cpython-38.opt-2.pyc 3.034 KB -rw-r--r-- 2022-04-22 10:25 R E G D
rlcompleter.cpython-38.pyc 5.635 KB -rw-r--r-- 2022-04-22 10:25 R E G D
runpy.cpython-38.opt-1.pyc 8.004 KB -rw-r--r-- 2022-04-22 10:25 R E G D
runpy.cpython-38.opt-2.pyc 6.475 KB -rw-r--r-- 2022-04-22 10:25 R E G D
runpy.cpython-38.pyc 8.004 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sched.cpython-38.opt-1.pyc 6.394 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sched.cpython-38.opt-2.pyc 3.438 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sched.cpython-38.pyc 6.394 KB -rw-r--r-- 2022-04-22 10:25 R E G D
secrets.cpython-38.opt-1.pyc 2.153 KB -rw-r--r-- 2022-04-22 10:25 R E G D
secrets.cpython-38.opt-2.pyc 1.12 KB -rw-r--r-- 2022-04-22 10:25 R E G D
secrets.cpython-38.pyc 2.153 KB -rw-r--r-- 2022-04-22 10:25 R E G D
selectors.cpython-38.opt-1.pyc 16.553 KB -rw-r--r-- 2022-04-22 10:25 R E G D
selectors.cpython-38.opt-2.pyc 12.612 KB -rw-r--r-- 2022-04-22 10:25 R E G D
selectors.cpython-38.pyc 16.553 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shelve.cpython-38.opt-1.pyc 9.282 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shelve.cpython-38.opt-2.pyc 5.229 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shelve.cpython-38.pyc 9.282 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shlex.cpython-38.opt-1.pyc 7.374 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shlex.cpython-38.opt-2.pyc 6.83 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shlex.cpython-38.pyc 7.374 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shutil.cpython-38.opt-1.pyc 36.361 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shutil.cpython-38.opt-2.pyc 25.175 KB -rw-r--r-- 2022-04-22 10:25 R E G D
shutil.cpython-38.pyc 36.361 KB -rw-r--r-- 2022-04-22 10:25 R E G D
signal.cpython-38.opt-1.pyc 2.791 KB -rw-r--r-- 2022-04-22 10:25 R E G D
signal.cpython-38.opt-2.pyc 2.572 KB -rw-r--r-- 2022-04-22 10:25 R E G D
signal.cpython-38.pyc 2.791 KB -rw-r--r-- 2022-04-22 10:25 R E G D
site.cpython-38.opt-1.pyc 16.378 KB -rw-r--r-- 2022-04-22 10:25 R E G D
site.cpython-38.opt-2.pyc 10.972 KB -rw-r--r-- 2022-04-22 10:25 R E G D
site.cpython-38.pyc 16.378 KB -rw-r--r-- 2022-04-22 10:25 R E G D
smtpd.cpython-38.opt-1.pyc 25.857 KB -rw-r--r-- 2022-04-22 10:25 R E G D
smtpd.cpython-38.opt-2.pyc 23.299 KB -rw-r--r-- 2022-04-22 10:25 R E G D
smtpd.cpython-38.pyc 25.857 KB -rw-r--r-- 2022-04-22 10:25 R E G D
smtplib.cpython-38.opt-1.pyc 34.79 KB -rw-r--r-- 2022-04-22 10:25 R E G D
smtplib.cpython-38.opt-2.pyc 18.812 KB -rw-r--r-- 2022-04-22 10:25 R E G D
smtplib.cpython-38.pyc 34.85 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sndhdr.cpython-38.opt-1.pyc 6.84 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sndhdr.cpython-38.opt-2.pyc 5.595 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sndhdr.cpython-38.pyc 6.84 KB -rw-r--r-- 2022-04-22 10:25 R E G D
socket.cpython-38.opt-1.pyc 27.111 KB -rw-r--r-- 2022-04-22 10:25 R E G D
socket.cpython-38.opt-2.pyc 18.983 KB -rw-r--r-- 2022-04-22 10:25 R E G D
socket.cpython-38.pyc 27.15 KB -rw-r--r-- 2022-04-22 10:25 R E G D
socketserver.cpython-38.opt-1.pyc 24.781 KB -rw-r--r-- 2022-04-22 10:25 R E G D
socketserver.cpython-38.opt-2.pyc 14.316 KB -rw-r--r-- 2022-04-22 10:25 R E G D
socketserver.cpython-38.pyc 24.781 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_compile.cpython-38.opt-1.pyc 14.581 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_compile.cpython-38.opt-2.pyc 14.177 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_compile.cpython-38.pyc 14.802 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_constants.cpython-38.opt-1.pyc 6.225 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_constants.cpython-38.opt-2.pyc 5.81 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_constants.cpython-38.pyc 6.225 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_parse.cpython-38.opt-1.pyc 21.108 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_parse.cpython-38.opt-2.pyc 21.062 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sre_parse.cpython-38.pyc 21.154 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ssl.cpython-38.opt-1.pyc 43.565 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ssl.cpython-38.opt-2.pyc 32.845 KB -rw-r--r-- 2022-04-22 10:25 R E G D
ssl.cpython-38.pyc 43.565 KB -rw-r--r-- 2022-04-22 10:25 R E G D
stat.cpython-38.opt-1.pyc 4.284 KB -rw-r--r-- 2022-04-22 10:25 R E G D
stat.cpython-38.opt-2.pyc 3.52 KB -rw-r--r-- 2022-04-22 10:25 R E G D
stat.cpython-38.pyc 4.284 KB -rw-r--r-- 2022-04-22 10:25 R E G D
statistics.cpython-38.opt-1.pyc 32.49 KB -rw-r--r-- 2022-04-22 10:25 R E G D
statistics.cpython-38.opt-2.pyc 17.171 KB -rw-r--r-- 2022-04-22 10:25 R E G D
statistics.cpython-38.pyc 32.879 KB -rw-r--r-- 2022-04-22 10:25 R E G D
string.cpython-38.opt-1.pyc 7.144 KB -rw-r--r-- 2022-04-22 10:25 R E G D
string.cpython-38.opt-2.pyc 6.063 KB -rw-r--r-- 2022-04-22 10:25 R E G D
string.cpython-38.pyc 7.144 KB -rw-r--r-- 2022-04-22 10:25 R E G D
stringprep.cpython-38.opt-1.pyc 10.717 KB -rw-r--r-- 2022-04-22 10:25 R E G D
stringprep.cpython-38.opt-2.pyc 10.502 KB -rw-r--r-- 2022-04-22 10:25 R E G D
stringprep.cpython-38.pyc 10.773 KB -rw-r--r-- 2022-04-22 10:25 R E G D
struct.cpython-38.opt-1.pyc 0.337 KB -rw-r--r-- 2022-04-22 10:25 R E G D
struct.cpython-38.opt-2.pyc 0.337 KB -rw-r--r-- 2022-04-22 10:25 R E G D
struct.cpython-38.pyc 0.337 KB -rw-r--r-- 2022-04-22 10:25 R E G D
subprocess.cpython-38.opt-1.pyc 40.903 KB -rw-r--r-- 2022-04-22 10:25 R E G D
subprocess.cpython-38.opt-2.pyc 29.253 KB -rw-r--r-- 2022-04-22 10:25 R E G D
subprocess.cpython-38.pyc 40.998 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sunau.cpython-38.opt-1.pyc 16.694 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sunau.cpython-38.opt-2.pyc 12.212 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sunau.cpython-38.pyc 16.694 KB -rw-r--r-- 2022-04-22 10:25 R E G D
symbol.cpython-38.opt-1.pyc 2.362 KB -rw-r--r-- 2022-04-22 10:25 R E G D
symbol.cpython-38.opt-2.pyc 2.288 KB -rw-r--r-- 2022-04-22 10:25 R E G D
symbol.cpython-38.pyc 2.362 KB -rw-r--r-- 2022-04-22 10:25 R E G D
symtable.cpython-38.opt-1.pyc 10.979 KB -rw-r--r-- 2022-04-22 10:25 R E G D
symtable.cpython-38.opt-2.pyc 10.213 KB -rw-r--r-- 2022-04-22 10:25 R E G D
symtable.cpython-38.pyc 11.071 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sysconfig.cpython-38.opt-1.pyc 15.49 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sysconfig.cpython-38.opt-2.pyc 13.168 KB -rw-r--r-- 2022-04-22 10:25 R E G D
sysconfig.cpython-38.pyc 15.49 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tabnanny.cpython-38.opt-1.pyc 6.88 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tabnanny.cpython-38.opt-2.pyc 5.969 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tabnanny.cpython-38.pyc 6.88 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tarfile.cpython-38.opt-1.pyc 61.177 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tarfile.cpython-38.opt-2.pyc 47.612 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tarfile.cpython-38.pyc 61.207 KB -rw-r--r-- 2022-04-22 10:25 R E G D
telnetlib.cpython-38.opt-1.pyc 17.824 KB -rw-r--r-- 2022-04-22 10:25 R E G D
telnetlib.cpython-38.opt-2.pyc 10.498 KB -rw-r--r-- 2022-04-22 10:25 R E G D
telnetlib.cpython-38.pyc 17.824 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tempfile.cpython-38.opt-1.pyc 22.863 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tempfile.cpython-38.opt-2.pyc 16.49 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tempfile.cpython-38.pyc 22.863 KB -rw-r--r-- 2022-04-22 10:25 R E G D
textwrap.cpython-38.opt-1.pyc 13.145 KB -rw-r--r-- 2022-04-22 10:25 R E G D
textwrap.cpython-38.opt-2.pyc 6.104 KB -rw-r--r-- 2022-04-22 10:25 R E G D
textwrap.cpython-38.pyc 13.217 KB -rw-r--r-- 2022-04-22 10:25 R E G D
this.cpython-38.opt-1.pyc 1.246 KB -rw-r--r-- 2022-04-22 10:25 R E G D
this.cpython-38.opt-2.pyc 1.246 KB -rw-r--r-- 2022-04-22 10:25 R E G D
this.cpython-38.pyc 1.246 KB -rw-r--r-- 2022-04-22 10:25 R E G D
threading.cpython-38.opt-1.pyc 38.516 KB -rw-r--r-- 2022-04-22 10:25 R E G D
threading.cpython-38.opt-2.pyc 22.327 KB -rw-r--r-- 2022-04-22 10:25 R E G D
threading.cpython-38.pyc 39.054 KB -rw-r--r-- 2022-04-22 10:25 R E G D
timeit.cpython-38.opt-1.pyc 11.516 KB -rw-r--r-- 2022-04-22 10:25 R E G D
timeit.cpython-38.opt-2.pyc 5.799 KB -rw-r--r-- 2022-04-22 10:25 R E G D
timeit.cpython-38.pyc 11.516 KB -rw-r--r-- 2022-04-22 10:25 R E G D
token.cpython-38.opt-1.pyc 2.441 KB -rw-r--r-- 2022-04-22 10:25 R E G D
token.cpython-38.opt-2.pyc 2.409 KB -rw-r--r-- 2022-04-22 10:25 R E G D
token.cpython-38.pyc 2.441 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tokenize.cpython-38.opt-1.pyc 16.729 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tokenize.cpython-38.opt-2.pyc 13.054 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tokenize.cpython-38.pyc 16.772 KB -rw-r--r-- 2022-04-22 10:25 R E G D
trace.cpython-38.opt-1.pyc 19.571 KB -rw-r--r-- 2022-04-22 10:25 R E G D
trace.cpython-38.opt-2.pyc 16.628 KB -rw-r--r-- 2022-04-22 10:25 R E G D
trace.cpython-38.pyc 19.571 KB -rw-r--r-- 2022-04-22 10:25 R E G D
traceback.cpython-38.opt-1.pyc 19.485 KB -rw-r--r-- 2022-04-22 10:25 R E G D
traceback.cpython-38.opt-2.pyc 10.791 KB -rw-r--r-- 2022-04-22 10:25 R E G D
traceback.cpython-38.pyc 19.485 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tracemalloc.cpython-38.opt-1.pyc 16.971 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tracemalloc.cpython-38.opt-2.pyc 15.591 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tracemalloc.cpython-38.pyc 16.971 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tty.cpython-38.opt-1.pyc 1.065 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tty.cpython-38.opt-2.pyc 0.959 KB -rw-r--r-- 2022-04-22 10:25 R E G D
tty.cpython-38.pyc 1.065 KB -rw-r--r-- 2022-04-22 10:25 R E G D
types.cpython-38.opt-1.pyc 8.977 KB -rw-r--r-- 2022-04-22 10:25 R E G D
types.cpython-38.opt-2.pyc 7.783 KB -rw-r--r-- 2022-04-22 10:25 R E G D
types.cpython-38.pyc 8.977 KB -rw-r--r-- 2022-04-22 10:25 R E G D
typing.cpython-38.opt-1.pyc 60.924 KB -rw-r--r-- 2022-04-22 10:25 R E G D
typing.cpython-38.opt-2.pyc 44.568 KB -rw-r--r-- 2022-04-22 10:25 R E G D
typing.cpython-38.pyc 60.972 KB -rw-r--r-- 2022-04-22 10:25 R E G D
uu.cpython-38.opt-1.pyc 3.535 KB -rw-r--r-- 2022-04-22 10:25 R E G D
uu.cpython-38.opt-2.pyc 3.297 KB -rw-r--r-- 2022-04-22 10:25 R E G D
uu.cpython-38.pyc 3.535 KB -rw-r--r-- 2022-04-22 10:25 R E G D
uuid.cpython-38.opt-1.pyc 23.012 KB -rw-r--r-- 2022-04-22 10:25 R E G D
uuid.cpython-38.opt-2.pyc 16.023 KB -rw-r--r-- 2022-04-22 10:25 R E G D
uuid.cpython-38.pyc 23.143 KB -rw-r--r-- 2022-04-22 10:25 R E G D
warnings.cpython-38.opt-1.pyc 12.897 KB -rw-r--r-- 2022-04-22 10:25 R E G D
warnings.cpython-38.opt-2.pyc 10.676 KB -rw-r--r-- 2022-04-22 10:25 R E G D
warnings.cpython-38.pyc 13.347 KB -rw-r--r-- 2022-04-22 10:25 R E G D
wave.cpython-38.opt-1.pyc 17.689 KB -rw-r--r-- 2022-04-22 10:25 R E G D
wave.cpython-38.opt-2.pyc 11.838 KB -rw-r--r-- 2022-04-22 10:25 R E G D
wave.cpython-38.pyc 17.738 KB -rw-r--r-- 2022-04-22 10:25 R E G D
weakref.cpython-38.opt-1.pyc 19.046 KB -rw-r--r-- 2022-04-22 10:25 R E G D
weakref.cpython-38.opt-2.pyc 15.839 KB -rw-r--r-- 2022-04-22 10:25 R E G D
weakref.cpython-38.pyc 19.075 KB -rw-r--r-- 2022-04-22 10:25 R E G D
webbrowser.cpython-38.opt-1.pyc 16.701 KB -rw-r--r-- 2022-04-22 10:25 R E G D
webbrowser.cpython-38.opt-2.pyc 14.348 KB -rw-r--r-- 2022-04-22 10:25 R E G D
webbrowser.cpython-38.pyc 16.733 KB -rw-r--r-- 2022-04-22 10:25 R E G D
xdrlib.cpython-38.opt-1.pyc 8.043 KB -rw-r--r-- 2022-04-22 10:25 R E G D
xdrlib.cpython-38.opt-2.pyc 7.569 KB -rw-r--r-- 2022-04-22 10:25 R E G D
xdrlib.cpython-38.pyc 8.043 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipapp.cpython-38.opt-1.pyc 5.731 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipapp.cpython-38.opt-2.pyc 4.583 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipapp.cpython-38.pyc 5.731 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipfile.cpython-38.opt-1.pyc 57.121 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipfile.cpython-38.opt-2.pyc 48.636 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipfile.cpython-38.pyc 57.157 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipimport.cpython-38.opt-1.pyc 16.783 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipimport.cpython-38.opt-2.pyc 13.348 KB -rw-r--r-- 2022-04-22 10:25 R E G D
zipimport.cpython-38.pyc 16.885 KB -rw-r--r-- 2022-04-22 10:25 R E G D
REQUEST EXIT
U ,a:}%@sdZddddddddd d d d d ddddddddddddddddddd d!d"d#d$d%g%ZeZd&Zd'Zd(Zd)d*lZd)d*lZ d)d*l Z zd)d+l m Z e dd,ZWnek rd-d.ZYnXdZdZdZdZdZdZdZdZd/Zd/Ze jd0krd1Zd1Zd2Zn d3Zd3Zd4Zeed5ZGd6ddeZ Gd7dde Z!Gd8d d e Z"Gd9dde"Z#Gd:d d e e$Z%Gd;dde"Z&Gddde"Z)Gd?d d e Z*Gd@d d e Z+GdAdde(e*Z,GdBdde(e*e+Z-GdCdde e.Z/e!e%e(e,e*e-e"e+e/g Z0e#e"e&e"e'e"e)e"iZ1eeeeeeeefZ2d)d*l3Z3e34dDZ5dEdZ6dFdZ7[3ddGdZ8GdHdde9Z:ddJdKZ;e j<=e:GdLdMdMe9Z>GdNdde9Z?GdOdPdPe9Z@ddQdRZAeBjCZDdSdTZEdUdVZFdWdXZGdYdZZHdd\d]ZId^d_ZJd`daZKGdbdcdce9ZLeLjMZNddddeZOdfdgZPdhdiZQdjdkdldmdndodpdqdrds fdtduZRddvdwZSddxdyZTe?dzee%e,e"ggd{d|d5d)d}ZUe?d~ee%e,e"e!e-ggdZVe?d~eggdZWd)d*lXZXeXYdeXjZeXj[Bj\Z]eXYdj\Z^eXYdj\Z_eXYdeXjZeXj`BZa[Xz d)d*lbZcWnek rYnXdddZdddZeddZfdddZgddZhddZie:dZje:dZke:dZle:d)Zme:d5Zne:dZoejekfZpe jqjrZse jqjtZue jqjvZwexdqesdesZy[ d*S)a This is an implementation of decimal floating point arithmetic based on the General Decimal Arithmetic Specification: http://speleotrove.com/decimal/decarith.html and IEEE standard 854-1987: http://en.wikipedia.org/wiki/IEEE_854-1987 Decimal floating point has finite precision with arbitrarily large bounds. The purpose of this module is to support arithmetic using familiar "schoolhouse" rules and to avoid some of the tricky representation issues associated with binary floating point. The package is especially useful for financial applications or for contexts where users have expectations that are at odds with binary floating point (for instance, in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected Decimal('0.00')). Here are some examples of using the decimal module: >>> from decimal import * >>> setcontext(ExtendedContext) >>> Decimal(0) Decimal('0') >>> Decimal('1') Decimal('1') >>> Decimal('-.0123') Decimal('-0.0123') >>> Decimal(123456) Decimal('123456') >>> Decimal('123.45e12345678') Decimal('1.2345E+12345680') >>> Decimal('1.33') + Decimal('1.27') Decimal('2.60') >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') Decimal('-2.20') >>> dig = Decimal(1) >>> print(dig / Decimal(3)) 0.333333333 >>> getcontext().prec = 18 >>> print(dig / Decimal(3)) 0.333333333333333333 >>> print(dig.sqrt()) 1 >>> print(Decimal(3).sqrt()) 1.73205080756887729 >>> print(Decimal(3) ** 123) 4.85192780976896427E+58 >>> inf = Decimal(1) / Decimal(0) >>> print(inf) Infinity >>> neginf = Decimal(-1) / Decimal(0) >>> print(neginf) -Infinity >>> print(neginf + inf) NaN >>> print(neginf * inf) -Infinity >>> print(dig / 0) Infinity >>> getcontext().traps[DivisionByZero] = 1 >>> print(dig / 0) Traceback (most recent call last): ... ... ... decimal.DivisionByZero: x / 0 >>> c = Context() >>> c.traps[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.divide(Decimal(0), Decimal(0)) Decimal('NaN') >>> c.traps[InvalidOperation] = 1 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> print(c.divide(Decimal(0), Decimal(0))) Traceback (most recent call last): ... ... ... decimal.InvalidOperation: 0 / 0 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> c.traps[InvalidOperation] = 0 >>> print(c.divide(Decimal(0), Decimal(0))) NaN >>> print(c.flags[InvalidOperation]) 1 >>> DecimalContext DecimalTupleDefaultContext BasicContextExtendedContextDecimalExceptionClampedInvalidOperationDivisionByZeroInexactRounded SubnormalOverflow UnderflowFloatOperationDivisionImpossibleInvalidContextConversionSyntaxDivisionUndefined ROUND_DOWN ROUND_HALF_UPROUND_HALF_EVEN ROUND_CEILING ROUND_FLOORROUND_UPROUND_HALF_DOWN ROUND_05UP setcontext getcontext localcontextMAX_PRECMAX_EMAXMIN_EMIN MIN_ETINY HAVE_THREADSHAVE_CONTEXTVARdecimalz1.70z2.4.2N) namedtuplezsign digits exponentcGs|SN)argsr*r*//opt/alt/python38/lib64/python3.8/_pydecimal.pyr-TllNZolNZoi@Tic@seZdZdZddZdS)ra1Base exception class. Used exceptions derive from this. If an exception derives from another exception besides this (such as Underflow (Inexact, Rounded, Subnormal) that indicates that it is only called if the others are present. This isn't actually used for anything, though. handle -- Called when context._raise_error is called and the trap_enabler is not set. First argument is self, second is the context. More arguments can be given, those being after the explanation in _raise_error (For example, context._raise_error(NewError, '(-x)!', self._sign) would call NewError().handle(context, self._sign).) To define a new exception, it should be sufficient to have it derive from DecimalException. cGsdSr)r*selfcontextr+r*r*r,handleszDecimalException.handleN__name__ __module__ __qualname____doc__r3r*r*r*r,rsc@seZdZdZdS)ra)Exponent of a 0 changed to fit bounds. This occurs and signals clamped if the exponent of a result has been altered in order to fit the constraints of a specific concrete representation. This may occur when the exponent of a zero result would be outside the bounds of a representation, or when a large normal number would have an encoded exponent that cannot be represented. In this latter case, the exponent is reduced to fit and the corresponding number of zero digits are appended to the coefficient ("fold-down"). Nr5r6r7r8r*r*r*r,rsc@seZdZdZddZdS)r a0An invalid operation was performed. Various bad things cause this: Something creates a signaling NaN -INF + INF 0 * (+-)INF (+-)INF / (+-)INF x % 0 (+-)INF % x x._rescale( non-integer ) sqrt(-x) , x > 0 0 ** 0 x ** (non-integer) x ** (+-)INF An operand is invalid The result of the operation after these is a quiet positive NaN, except when the cause is a signaling NaN, in which case the result is also a quiet NaN, but with the original sign, and an optional diagnostic information. cGs,|r(t|dj|djdd}||StS)Nr'nT)_dec_from_triple_sign_int_fix_nan_NaN)r1r2r+ansr*r*r,r3s zInvalidOperation.handleNr4r*r*r*r,r sc@seZdZdZddZdS)rzTrying to convert badly formed string. This occurs and signals invalid-operation if a string is being converted to a number and it does not conform to the numeric string syntax. The result is [0,qNaN]. cGstSr)r?r0r*r*r,r3szConversionSyntax.handleNr4r*r*r*r,rsc@seZdZdZddZdS)r aDivision by 0. This occurs and signals division-by-zero if division of a finite number by zero was attempted (during a divide-integer or divide operation, or a power operation with negative right-hand operand), and the dividend was not zero. The result of the operation is [sign,inf], where sign is the exclusive or of the signs of the operands for divide, or is 1 for an odd power of -0, for power. cGst|Sr))_SignedInfinityr1r2signr+r*r*r,r3szDivisionByZero.handleNr4r*r*r*r,r s c@seZdZdZddZdS)rzCannot perform the division adequately. This occurs and signals invalid-operation if the integer result of a divide-integer or remainder operation had too many digits (would be longer than precision). The result is [0,qNaN]. cGstSr)rAr0r*r*r,r3"szDivisionImpossible.handleNr4r*r*r*r,rsc@seZdZdZddZdS)rzUndefined result of division. This occurs and signals invalid-operation if division by zero was attempted (during a divide-integer, divide, or remainder operation), and the dividend is also zero. The result is [0,qNaN]. cGstSr)rAr0r*r*r,r3-szDivisionUndefined.handleNr4r*r*r*r,r%sc@seZdZdZdS)r aHad to round, losing information. This occurs and signals inexact whenever the result of an operation is not exact (that is, it needed to be rounded and any discarded digits were non-zero), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The inexact signal may be tested (or trapped) to determine if a given operation (or sequence of operations) was inexact. Nr9r*r*r*r,r 0sc@seZdZdZddZdS)raInvalid context. Unknown rounding, for example. This occurs and signals invalid-operation if an invalid context was detected during an operation. This can occur if contexts are not checked on creation and either the precision exceeds the capability of the underlying concrete representation or an unknown or unsupported rounding was specified. These aspects of the context need only be checked when the values are required to be used. The result is [0,qNaN]. cGstSr)rAr0r*r*r,r3GszInvalidContext.handleNr4r*r*r*r,r<s c@seZdZdZdS)r aNumber got rounded (not necessarily changed during rounding). This occurs and signals rounded whenever the result of an operation is rounded (that is, some zero or non-zero digits were discarded from the coefficient), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The rounded signal may be tested (or trapped) to determine if a given operation (or sequence of operations) caused a loss of precision. Nr9r*r*r*r,r Jsc@seZdZdZdS)r aExponent < Emin before rounding. This occurs and signals subnormal whenever the result of a conversion or operation is subnormal (that is, its adjusted exponent is less than Emin, before any rounding). The result in all cases is unchanged. The subnormal signal may be tested (or trapped) to determine if a given or operation (or sequence of operations) yielded a subnormal result. Nr9r*r*r*r,r Vsc@seZdZdZddZdS)raNumerical overflow. This occurs and signals overflow if the adjusted exponent of a result (from a conversion or from an operation that is not an attempt to divide by zero), after rounding, would be greater than the largest value that can be handled by the implementation (the value Emax). The result depends on the rounding mode: For round-half-up and round-half-even (and for round-half-down and round-up, if implemented), the result of the operation is [sign,inf], where sign is the sign of the intermediate result. For round-down, the result is the largest finite number that can be represented in the current precision, with the sign of the intermediate result. For round-ceiling, the result is the same as for round-down if the sign of the intermediate result is 1, or is [0,inf] otherwise. For round-floor, the result is the same as for round-down if the sign of the intermediate result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded will also be raised. cGs|jttttfkrt|S|dkrR|jtkr4t|St|d|j|j |jdS|dkr|jt krlt|St|d|j|j |jdSdS)Nr'9r/) roundingrrrrrBrr;precEmaxrrCr*r*r,r3ws"    zOverflow.handleNr4r*r*r*r,rasc@seZdZdZdS)raxNumerical underflow with result rounded to 0. This occurs and signals underflow if a result is inexact and the adjusted exponent of the result would be smaller (more negative) than the smallest value that can be handled by the implementation (the value Emin). That is, the result is both inexact and subnormal. The result after an underflow will be a subnormal number rounded, if necessary, so that its exponent is not less than Etiny. This may result in 0 with the sign of the intermediate result and an exponent of Etiny. In all cases, Inexact, Rounded, and Subnormal will also be raised. Nr9r*r*r*r,rsc@seZdZdZdS)raEnable stricter semantics for mixing floats and Decimals. If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal() constructor, context.create_decimal() and all comparison operators. Both conversion and comparisons are exact. Any occurrence of a mixed operation is silently recorded by setting FloatOperation in the context flags. Explicit conversions with Decimal.from_float() or context.create_decimal_from_float() do not set the flag. Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other mixed operations raise FloatOperation. Nr9r*r*r*r,rsZdecimal_contextcCs8z tWStk r2t}t||YSXdS)zReturns this thread's context. If this thread does not yet have a context, returns a new context and sets this thread's context. New contexts are copies of DefaultContext. N)_current_context_varget LookupErrorrsetr2r*r*r,rs   cCs,|tttfkr|}|t|dS)z%Set this thread's context to context.N)rrrcopy clear_flagsrIrLrMr*r*r,rscCs|dkrt}t|S)abReturn a context manager for a copy of the supplied context Uses a copy of the current context if no context is specified The returned context manager creates a local decimal context in a with statement: def sin(x): with localcontext() as ctx: ctx.prec += 2 # Rest of sin calculation algorithm # uses a precision 2 greater than normal return +s # Convert result to normal precision def sin(x): with localcontext(ExtendedContext): # Rest of sin calculation algorithm # uses the Extended Context from the # General Decimal Arithmetic Specification return +s # Convert result to normal context >>> setcontext(DefaultContext) >>> print(getcontext().prec) 28 >>> with localcontext(): ... ctx = getcontext() ... ctx.prec += 2 ... print(ctx.prec) ... 30 >>> with localcontext(ExtendedContext): ... print(getcontext().prec) ... 9 >>> print(getcontext().prec) 28 N)r_ContextManager)Zctxr*r*r,rs$c @seZdZdZdZdddZeddZd d Zd d Z dd dZ ddZ ddZ ddZ dddZdddZdddZdddZdddZddd Zd!d"Zd#d$Zd%d&Zd'd(Zdd*d+Zdd,d-Zdd.d/Zdd0d1Zdd3d4Zdd5d6ZeZdd7d8Zdd9d:Z dd;d<Z!e!Z"dd=d>Z#d?d@Z$ddAdBZ%ddCdDZ&ddEdFZ'ddGdHZ(ddIdJZ)d dKdLZ*d dMdNZ+d dOdPZ,dQdRZ-dSdTZ.e.Z/e0dUdVZ1e0dWdXZ2dYdZZ3d[d\Z4d]d^Z5d_d`Z6dadbZ7dcddZ8dedfZ9dgdhZ:didjZ;dkdlZe?e7e8e9e:e;edqZ@d drdsZAdtduZBdvdwZCd dxdyZDddzd{ZEd|d}ZFdd~dZGdddZHdddZIdddZJdddZKddZLddZMdddZNdddZOeOZPdddZQdddZRdddZSddZTddZUddZVddZWdddZXdddZYdddZZddZ[ddZ\dddZ]dddZ^ddZ_ddZ`ddZaddZbdddZcddZdddZeddZfdddZgddZhddZid ddÄZjddńZkd!ddDŽZld"ddɄZmdd˄Zndd̈́Zod#ddτZpd$ddфZqd%ddӄZrd&ddՄZsd'ddׄZtd(ddلZud)ddۄZvd*dd݄Zwd+dd߄Zxd,ddZyddZzd-ddZ{d.ddZ|d/ddZ}ddZ~ddZddZd0ddZdS(1rz,Floating point class for decimal arithmetic.)_expr=r< _is_special0Nc Cst|}t|tr$t|dd}|dkrP|dkr@t}|t d|S| ddkrfd|_ nd|_ | d }|dk r| d pd}t | d pd }tt |||_ |t||_d |_nZ| d}|dk rtt |pd d |_ | drd|_nd|_n d |_ d|_d|_|St|t rf|dkrBd|_ nd|_ d|_tt||_ d |_|St|tr|j|_|j |_ |j |_ |j|_|St|tr|j|_ t|j |_ t |j|_d |_|St|ttfr"t|dkrtdt|dt r|ddkstd|d|_ |ddkrHd |_ |d|_d|_ng} |dD]R} t| t rd| kr|dkrnn| s| dkr| | ntdqT|ddkrdtt| |_ |d|_d|_nDt|dt rdtt| pdg|_ |d|_d |_ntd|St|trx|dkr>t}|tdt|}|j|_|j |_ |j |_ |j|_|St d|dS)aCreate a decimal point instance. >>> Decimal('3.14') # string input Decimal('3.14') >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) Decimal('3.14') >>> Decimal(314) # int Decimal('314') >>> Decimal(Decimal(314)) # another decimal instance Decimal('314') >>> Decimal(' 3.14 \n') # leading and trailing whitespace okay Decimal('3.14') _NzInvalid literal for Decimal: %rrD-r/r'intZfracexprSFdiagsignalNr:FTztInvalid tuple size in creation of Decimal from list or tuple. The list or tuple should have exactly three elements.r'r/z|Invalid sign. The first value in the tuple should be an integer; either 0 for a positive number or 1 for a negative number. zTThe second value in the tuple must be composed of integers in the range 0 through 9.r:r[zUThe third value in the tuple must be an integer, or one of the strings 'F', 'n', 'N'.;strict semantics for mixing floats and Decimals are enabledzCannot convert %r to Decimal)!object__new__ isinstancestr_parserstripreplacer _raise_errorrgroupr<rWr=lenrQrRlstripabsr_WorkReprDrXlisttuple ValueErrorappendjoinmapfloatr from_float TypeError) clsvaluer2r1mintpartfracpartrXrYdigitsdigitr*r*r,rd s               (       zDecimal.__new__cCst|tr,|dkrdnd}d}tt|}nzt|trt|sJt|rV|t|St d|dkrld}nd}t| \}}| d}t|d|}nt dt ||| }|tkr|S||SdS)a.Converts a float to a decimal number, exactly. Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). Since 0.1 is not exactly representable in binary floating point, the value is stored as the nearest representable value which is 0x1.999999999999ap-4. The exact equivalent of the value in decimal is 0.1000000000000000055511151231257827021181583404541015625. >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(-float('inf')) Decimal('-Infinity') >>> Decimal.from_float(-0.0) Decimal('-0') r'r/g?zargument must be int or float.N)rerWrfrnrv_mathZisinfZisnanreprZcopysignas_integer_ratio bit_lengthrxr;r)ryfrDkcoeffr:dresultr*r*r,rws$    zDecimal.from_floatcCs(|jr$|j}|dkrdS|dkr$dSdS)zrReturns whether the number is not actually one. 0 if a number 1 if NaN 2 if sNaN r:r/r[r_r')rRrQ)r1rXr*r*r,_isnanszDecimal._isnancCs|jdkr|jrdSdSdS)zyReturns whether the number is infinite 0 if finite or not a number 1 if +INF -1 if -INF r\r/r')rQr<r1r*r*r, _isinfinitys  zDecimal._isinfinitycCs||}|dkrd}n|}|s&|rx|dkr4t}|dkrJ|td|S|dkr`|td|S|rn||S||SdS)zReturns whether the number is not actually one. if self, other are sNaN, signal if self, other are NaN return nan return 0 Done before operations. NFr_sNaNr')rrrjr r>)r1otherr2 self_is_nan other_is_nanr*r*r, _check_nanss&   zDecimal._check_nanscCsv|dkrt}|js|jrr|r0|td|S|rF|td|S|r\|td|S|rr|td|SdS)aCVersion of _check_nans used for the signaling comparisons compare_signal, __le__, __lt__, __ge__, __gt__. Signal InvalidOperation if either self or other is a (quiet or signaling) NaN. Signaling NaNs take precedence over quiet NaNs. Return 0 if neither operand is a NaN. Nzcomparison involving sNaNzcomparison involving NaNr')rrRis_snanrjr is_qnanr1rr2r*r*r,_compare_check_nans s0  zDecimal._compare_check_nanscCs|jp|jdkS)zuReturn True if self is nonzero; otherwise return False. NaNs and infinities are considered nonzero. rSrRr=rr*r*r,__bool__*szDecimal.__bool__cCs|js |jr8|}|}||kr(dS||kr4dSdS|sP|sDdSd|j S|s^d|jS|j|jkrndS|j|jkr~dS|}|}||kr|jd|j|j}|jd|j|j}||krdS||krd|j Sd|jSn ||krd|jSd|j SdS)zCompare the two non-NaN decimal instances self and other. Returns -1 if self < other, 0 if self == other and 1 if self > other. This routine is for internal use only.r'rr/rSN)rRrr<adjustedr=rQ)r1rZself_infZ other_inf self_adjustedZother_adjusted self_paddedZ other_paddedr*r*r,_cmp1s>         z Decimal._cmpcCs<t||dd\}}|tkr|S|||r.dS||dkS)NT) equality_opFr')_convert_for_comparisonNotImplementedrrrr*r*r,__eq__qs  zDecimal.__eq__cCs<t||\}}|tkr|S|||}|r.dS||dkSNFr'rrrrr1rr2r@r*r*r,__lt__ys zDecimal.__lt__cCs<t||\}}|tkr|S|||}|r.dS||dkSrrrr*r*r,__le__s zDecimal.__le__cCs<t||\}}|tkr|S|||}|r.dS||dkSrrrr*r*r,__gt__s zDecimal.__gt__cCs<t||\}}|tkr|S|||}|r.dS||dkSrrrr*r*r,__ge__s zDecimal.__ge__cCs>t|dd}|js|r0|jr0|||}|r0|St||S)zCompare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') Traiseit)_convert_otherrRrrrrr*r*r,compares   zDecimal.comparecCs|jr4|rtdn|r$tS|jr0t StS|jdkrNtd|jt }ntt |j t }t |j |t }|dkr||n| }|dkrdS|S)zx.__hash__() <==> hash(x)z"Cannot hash a signaling NaN value.r' r) rRrrxis_nan _PyHASH_NANr< _PyHASH_INFrQpow_PyHASH_MODULUS _PyHASH_10INVrWr=)r1Zexp_hashZhash_r@r*r*r,__hash__s  zDecimal.__hash__cCst|jttt|j|jS)zeRepresents the number as a triple tuple. To show the internals exactly as they are. )rr<rqrurWr=rQrr*r*r,as_tupleszDecimal.as_tuplecCs|jr |rtdntd|s(dSt|j}|jdkrR|d|jd}}nn|j }|dkr|ddkr|d}|d8}qZ|j }t|| @d|}|r||L}||8}d||>}|j r| }||fS)aExpress a finite Decimal instance in the form n / d. Returns a pair (n, d) of integers. When called on an infinity or NaN, raises OverflowError or ValueError respectively. >>> Decimal('3.14').as_integer_ratio() (157, 50) >>> Decimal('-123e5').as_integer_ratio() (-12300000, 1) >>> Decimal('0.00').as_integer_ratio() (0, 1) z#cannot convert NaN to integer ratioz(cannot convert Infinity to integer ratior^r'rr/r) rRrrr OverflowErrorrWr=rQminrr<)r1r:rZd5Zd2Zshift2r*r*r,rs,     zDecimal.as_integer_ratiocCs dt|S)z0Represents the number as an instance of Decimal.z Decimal('%s'))rfrr*r*r,__repr__szDecimal.__repr__Fc Csbddg|j}|jrL|jdkr&|dS|jdkr>|d|jS|d|jS|jt|j}|jdkrt|d krt|}n6|s~d }n,|jd kr|d d d }n|d d d }|dkrd }d d | |j}nL|t|jkr|jd |t|j}d}n |jd|}d |j|d}||kr(d}n*|dkr8t}ddg|jd||}||||S)zReturn string representation of the number in scientific notation. Captures all of the information in the underlying representation. rUrVr\ZInfinityr:NaNrr'r/rSr].NeEz%+d)r<rRrQr=rlrcapitals) r1engr2rD leftdigitsdotplacer|r}rXr*r*r,__str__s:     zDecimal.__str__cCs|jd|dS)a,Convert to a string, using engineering notation if an exponent is needed. Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the decimal place and may require the addition of either one or two trailing zeros. T)rr2)rr1r2r*r*r, to_eng_string;szDecimal.to_eng_stringcCsR|jr|j|d}|r|S|dkr(t}|s@|jtkr@|}n|}||S)zRReturns a copy with the sign switched. Rounds, if it has reason. rMN)rRrrrFrcopy_abs copy_negate_fixr1r2r@r*r*r,__neg__Ds  zDecimal.__neg__cCsR|jr|j|d}|r|S|dkr(t}|s@|jtkr@|}nt|}||S)zhReturns a copy, unless it is a sNaN. Rounds the number (if more than precision digits) rMN)rRrrrFrrrrrr*r*r,__pos__Zs  zDecimal.__pos__TcCsJ|s |S|jr&|j|d}|r&|S|jr:|j|d}n |j|d}|S)zReturns the absolute value of self. If the keyword argument 'round' is false, do not round. The expression self.__abs__(round=False) is equivalent to self.copy_abs(). rM)rrRrr<rr)r1roundr2r@r*r*r,__abs__os  zDecimal.__abs__c Csht|}|tkr|S|dkr"t}|js.|jr|||}|rB|S|rr|j|jkrj|rj|tdSt |S|rt |St |j |j }d}|j t kr|j|jkrd}|s|st |j|j}|rd}t|d|}||}|S|st||j |jd}|||j }||}|S|sVt||j |jd}|||j }||}|St|}t|}t|||j\}}t} |j|jkr|j|jkrt|d|}||}|S|j|jkr||}}|jdkrd| _|j|j|_|_nd| _n&|jdkrd| _d\|_|_nd| _|jdkr<|j|j| _n|j|j| _|j| _t | }||}|S)zbReturns self + other. -INF + INF (or the reverse) cause InvalidOperation errors. Nz -INF + INFr'r/rS)r'r')rrrrRrrr<rjr rrrQrFrr;rmaxrG_rescalero _normalizerDrWrX) r1rr2r@rXZ negativezerorDop1op2rr*r*r,__add__s|              zDecimal.__add__cCsHt|}|tkr|S|js |jr6|j||d}|r6|S|j||dS)zReturn self - otherrM)rrrRrrrrr*r*r,__sub__s zDecimal.__sub__cCs"t|}|tkr|S|j||dS)zReturn other - selfrM)rrrrr*r*r,__rsub__szDecimal.__rsub__cCs@t|}|tkr|S|dkr"t}|j|jA}|js:|jr|||}|rN|S|rn|sf|tdSt |S|r|s|tdSt |S|j |j }|r|st |d|}| |}|S|j dkrt ||j |}| |}|S|j dkr t ||j |}| |}|St|}t|}t |t|j|j|}| |}|S)z\Return self * other. (+-) INF * 0 (or its reverse) raise InvalidOperation. Nz (+-)INF * 0z 0 * (+-)INFrS1)rrrr<rRrrrjr rBrQr;rr=rorfrW)r1rr2Z resultsignr@Z resultexprrr*r*r,__mul__sH             zDecimal.__mul__c Cst|}|tkrtS|dkr"t}|j|jA}|js:|jr|||}|rN|S|rj|rj|tdS|rzt |S|r|t dt |d| S|s|s|t dS|td|S|s|j|j}d}nt|jt|j|jd}|j|j|}t|}t|} |dkr:t|jd || j\}} nt|j| jd | \}} | rt|d dkr|d7}n8|j|j} || kr|d dkr|d }|d7}qt |t||}||S) zReturn self / other.Nz(+-)INF/(+-)INFzDivision by infinityrSz0 / 0zx / 0r'r/rr)rrrr<rRrrrjr rBrr;Etinyrr rQrlr=rGrodivmodrWrfr) r1rr2rDr@rXrshiftrr remainder ideal_expr*r*r, __truediv__,sP           zDecimal.__truediv__c Cs|j|jA}|r|j}nt|j|j}||}|rN|sN|dkrht|dd|||jfS||jkr t |}t |}|j |j kr|j d|j |j 9_ n|j d|j |j 9_ t |j |j \}} |d|jkr t|t |dt|jt | |fS|td} | | fS)zReturn (self // other, self % other), to context.prec precision. Assumes that neither self nor other is a NaN, that self is not infinite and that other is nonzero. rrSr'rz%quotient too large in //, % or divmod)r<rrQrrr;rrFrGrorXrWrrfrjr) r1rr2rDrexpdiffrrqrr@r*r*r,_dividegs0     zDecimal._dividecCs"t|}|tkr|S|j||dS)z)Swaps self/other and returns __truediv__.rM)rrrrr*r*r, __rtruediv__szDecimal.__rtruediv__cCst|}|tkr|S|dkr"t}|||}|r:||fS|j|jA}|r~|rj|td}||fSt||tdfS|s|s|t d}||fS|t d||tdfS| ||\}}| |}||fS)z6 Return (self // other, self % other) Nzdivmod(INF, INF)INF % xz divmod(0, 0)x // 0x % 0) rrrrr<rrjr rBrr rr)r1rr2r@rDZquotientrr*r*r, __divmod__s4        zDecimal.__divmod__cCs"t|}|tkr|S|j||dS)z(Swaps self/other and returns __divmod__.rM)rrrrr*r*r, __rdivmod__szDecimal.__rdivmod__cCst|}|tkr|S|dkr"t}|||}|r6|S|rJ|tdS|sj|r^|tdS|tdS|||d}| |}|S)z self % other Nrrz0 % 0r/) rrrrrrjr rrr)r1rr2r@rr*r*r,__mod__s"     zDecimal.__mod__cCs"t|}|tkr|S|j||dS)z%Swaps self/other and returns __mod__.rM)rrrrr*r*r,__rmod__szDecimal.__rmod__c Cs|dkrt}t|dd}|||}|r.|S|rB|tdS|sb|rV|tdS|tdS|r|t|}||St |j |j }|st |j d|}||S| | }||jdkr|tS|d kr|||j}||St|}t|}|j|jkr(|jd |j|j9_n|jd |j|j9_t|j|j\}} d | |d@|jkr~| |j8} |d7}|d |jkr|tS|j } | d krd| } | } t | t| |}||S) zI Remainder nearest to 0- abs(remainder-near) <= other/2 NTrzremainder_near(infinity, x)zremainder_near(x, 0)zremainder_near(0, 0)rSr/rrr_r')rrrrrjr rrrrrQr;r<rrGrrrFrorXrWrrf) r1rr2r@ideal_exponentrrrrrrDr*r*r,remainder_nears`         zDecimal.remainder_nearcCst|}|tkr|S|dkr"t}|||}|r6|S|rb|rR|tdSt|j|jAS|s|r|t d|j|jAS|t dS| ||dS)z self // otherNz INF // INFrz0 // 0r') rrrrrrjr rBr<r rrrr*r*r, __floordiv__'s&    zDecimal.__floordiv__cCs"t|}|tkr|S|j||dS)z*Swaps self/other and returns __floordiv__.rM)rrrrr*r*r, __rfloordiv__CszDecimal.__rfloordiv__cCs8|r(|rtd|jr"dnd}nt|}t|S)zFloat representation.z%Cannot convert signaling NaN to floatz-nannan)rrrrr<rfrvr1sr*r*r, __float__Js zDecimal.__float__cCst|jr(|rtdn|r(tdd|j}|jdkrT|t|jd|jS|t|jd|jpjdSdS)z1Converts self to an int, truncating if necessary.zCannot convert NaN to integerz"Cannot convert infinity to integerrr'rNrS) rRrrrrrr<rQrWr=rr*r*r,__int__Ts   zDecimal.__int__cCs|Sr)r*rr*r*r,realcsz Decimal.realcCstdS)Nr'rrr*r*r,imaggsz Decimal.imagcCs|Sr)r*rr*r*r, conjugatekszDecimal.conjugatecCs tt|Sr))complexrvrr*r*r, __complex__nszDecimal.__complex__cCsR|j}|j|j}t||krJ|t||dd}t|j||jdSt|S)z2Decapitate the payload of a NaN to fit the contextNrST) r=rGclamprlrmr;r<rQr)r1r2ZpayloadZmax_payload_lenr*r*r,r>qs   zDecimal._fix_nancCsX|jr |r||St|S|}|}|s|j|g|j}tt |j ||}||j krx| t t |jd|St|St|j|j |j}||kr| td|j}| t| t|S||k}|r|}|j |krt|j|j |} | dkrt |jd|d}d} |j|j} | || } |jd| p>d} | dkr~tt| d} t| |jkr~| dd} |d7}||kr| td|j}nt |j| |}| r|r| t|r| t| r| t| t|s| t |S|r | t|jdkrP|j |krP| t |jd|j |} t |j| |St|S)zRound if it is necessary to keep self within prec precision. Rounds and fixes the exponent. Does not raise on a sNaN. Arguments: self - Decimal instance context - context used. rS above Emaxr'rr/Nr)rRrr>rrEtoprHrrrrQrjrr;r<rlr=rGrr r _pick_rounding_functionrFrfrWrr )r1r2rrexp_maxZnew_expZexp_minr@Zself_is_subnormalr~Zrounding_methodchangedrrr*r*r,r}sn                     z Decimal._fixcCst|j|rdSdSdS)z(Also known as round-towards-0, truncate.r'rN) _all_zerosr=r1rGr*r*r, _round_downs zDecimal._round_downcCs || S)zRounds away from 0.)rrr*r*r, _round_upszDecimal._round_upcCs*|j|dkrdSt|j|r"dSdSdS)zRounds 5 up (away from 0)Z56789r/r'rN)r=rrr*r*r,_round_half_ups  zDecimal._round_half_upcCst|j|rdS||SdS)z Round 5 downrN _exact_halfr=rrr*r*r,_round_half_downs zDecimal._round_half_downcCs8t|j|r*|dks&|j|ddkr*dS||SdS)z!Round 5 to even, rest to nearest.r'r/02468rNrrr*r*r,_round_half_evens zDecimal._round_half_evencCs |jr||S|| SdS)z(Rounds up (not away from 0 if negative.)Nr<rrr*r*r,_round_ceilings zDecimal._round_ceilingcCs |js||S|| SdS)z'Rounds down (not towards 0 if negative)Nrrr*r*r, _round_floor s zDecimal._round_floorcCs0|r |j|ddkr ||S|| SdS)z)Round down unless digit prec-1 is 0 or 5.r/Z05N)r=rrr*r*r, _round_05ups zDecimal._round_05up)rrrrrrrrcCsb|dk r2t|tstdtdd| }||S|jrR|rJtdntdt| dt S)aRound self to the nearest integer, or to a given precision. If only one argument is supplied, round a finite Decimal instance self to the nearest integer. If self is infinite or a NaN then a Python exception is raised. If self is finite and lies exactly halfway between two integers then it is rounded to the integer with even last digit. >>> round(Decimal('123.456')) 123 >>> round(Decimal('-456.789')) -457 >>> round(Decimal('-3.0')) -3 >>> round(Decimal('2.5')) 2 >>> round(Decimal('3.5')) 4 >>> round(Decimal('Inf')) Traceback (most recent call last): ... OverflowError: cannot round an infinity >>> round(Decimal('NaN')) Traceback (most recent call last): ... ValueError: cannot round a NaN If a second argument n is supplied, self is rounded to n decimal places using the rounding mode for the current context. For an integer n, round(self, -n) is exactly equivalent to self.quantize(Decimal('1En')). >>> round(Decimal('123.456'), 0) Decimal('123') >>> round(Decimal('123.456'), 2) Decimal('123.46') >>> round(Decimal('123.456'), -2) Decimal('1E+2') >>> round(Decimal('-Infinity'), 37) Decimal('NaN') >>> round(Decimal('sNaN123'), 0) Decimal('NaN123') Nz+Second argument to round should be integralr'rcannot round a NaNcannot round an infinity) rerWrxr;quantizerRrrrrrr)r1r:rXr*r*r, __round__&s/   zDecimal.__round__cCs0|jr |rtdntdt|dtS)zReturn the floor of self, as an integer. For a finite Decimal instance self, return the greatest integer n such that n <= self. If self is infinite or a NaN then a Python exception is raised. r r r')rRrrrrrWrrrr*r*r, __floor__ds  zDecimal.__floor__cCs0|jr |rtdntdt|dtS)zReturn the ceiling of self, as an integer. For a finite Decimal instance self, return the least integer n such that n >= self. If self is infinite or a NaN then a Python exception is raised. r r r')rRrrrrrWrrrr*r*r,__ceil__ss  zDecimal.__ceil__cCst|dd}t|dd}|js$|jr|dkr2t}|jdkrJ|td|S|jdkrb|td|S|jdkrr|}nf|jdkr|}nV|jdkr|s|tdSt|j|jA}n*|jdkr|s|td St|j|jA}n0t|j|jAt t |j t |j |j|j}| ||S) a:Fused multiply-add. Returns self*other+third with no rounding of the intermediate product self*other. self and other are multiplied together, with no rounding of the result. The third operand is then added to the result, and a single final rounding is performed. TrNr[rr:r\zINF * 0 in fmaz0 * INF in fma) rrRrrQrjr rBr<r;rfrWr=r)r1rZthirdr2productr*r*r,fmas<           z Decimal.fmac Cst|}|tkr|St|}|tkr(|S|dkr6t}|}|}|}|sZ|sZ|r|dkrp|td|S|dkr|td|S|dkr|td|S|r||S|r||S||S|r|r|s|tdS|dkr|tdS|s |tdS||j kr(|tdS|s@|s@|td S| rPd}n|j }t t |}t|}t|} |j |td |j||}t| jD]} t|d |}qt|| j |}t|t|dS) z!Three argument version of __pow__Nr_rz@pow() 3rd argument not allowed unless all arguments are integersr'zApow() 2nd argument cannot be negative when 3rd argument specifiedzpow() 3rd argument cannot be 0zSinsufficient precision: pow() 3rd argument must not have more than precision digitszXat least one of pow() 1st argument and 2nd argument must be nonzero; 0**0 is not definedr)rrrrrjr r> _isintegerrrG_isevenr<rnrWroto_integral_valuerrXranger;rf) r1rmodulor2rrZ modulo_is_nanrDbaseexponentir*r*r, _power_modulos         zDecimal._power_modulocCst|}|j|j}}|ddkr4|d}|d7}qt|}|j|j}}|ddkrh|d}|d7}qJ|dkr||9}|ddkr|d}|d7}qz|dkrdS|d|} |jdkr| } |r|jdkr|jt|} t| | |d} nd} tddd| | | S|jdkr|d} | dkr|| @|krBdSt |d} |dd }|t t |krpdSt | ||} t |||}| dks|dkrdS| |krdSd | }n| d krt |d d } t d | |\}}|rdS|d dkr|d }| d8} q|dd }|t t |kr6dSt | ||} t |||}| dksf|dkrjdS| |krxdSd | }ndS|d|krdS| |}tdt ||S|dkr|d|d}}n|dkrt t t||| krdSt |}|dkr,t t t||| kr,dS|d| }}|d |d kr\dkrtnn|d }|d }q<|d |d krdkrnn|d }|d }qt|dkrX|dkr||krdSt ||\}}|dkrdSdt | | >}t |||d\}}||kr$q|S|sPt|jddS|j|g|j }t |j }|j }|j |ddkr||kr|d7}|d8}qtt|j|j d||S)z?Normalize- strip trailing 0s, change anything equal to 0 to 0e0NrMrSr'r/) rrRrrrr;r<rHrrrlr=rQ)r1r2r@duprendrXr*r*r, normalize s$    zDecimal.normalizecCst|dd}|dkrt}|dkr(|j}|js4|jr||||}|rH|S|sX|r||rp|rpt|S|tdS| |j kr|j ksn|tdS|st |j d|j }||S|}||j kr|tdS||j d|jkr|td S||j |}||j kr.|tdSt|j|jkrL|td S|rl||jkrl|t|j |j kr||kr|t|t||}|S) zQuantize self so its exponent is the same as that of exp. Similar to self._rescale(exp._exp) but with error checking. TrNzquantize with one INFz)target exponent out of bounds in quantizerSz9exponent of quantize result too large for current contextr/z7quantize result has too many digits for current context)rrrFrRrrrrjr rrQrHr;r<rrrGrrlr=Eminr r r )r1rXrFr2r@rr*r*r,r s`          zDecimal.quantizecCsDt|dd}|js|jr8|r(|p6|o6|S|j|jkS)a=Return True if self and other have the same exponent; otherwise return False. If either operand is a special value, the following rules are used: * return True if both operands are infinities * return True if both operands are NaNs * otherwise, return False. Tr)rrRr is_infiniterQrr*r*r, same_quantum% s  zDecimal.same_quantumcCs|jrt|S|s t|jd|S|j|krHt|j|jd|j||St|j|j|}|dkrzt|jd|d}d}|j|}|||}|jd|pd}|dkrtt |d}t|j||S)asRescale self so that the exponent is exp, either by padding with zeros or by truncating digits, using the given rounding mode. Specials are returned without change. This operation is quiet: it raises no flags, and uses no information from the context. exp = exp to scale to (an integer) rounding = rounding mode rSr'rr/N) rRrr;r<rQr=rlrrfrW)r1rXrFr~Z this_functionrrr*r*r,r4 s&    zDecimal._rescalecCsf|dkrtd|js|s"t|S||d||}||krb||d||}|S)a"Round a nonzero, nonspecial Decimal to a fixed number of significant figures, using the given rounding mode. Infinities, NaNs and zeros are returned unaltered. This operation is quiet: it raises no flags, and uses no information from the context. r'z'argument should be at least 1 in _roundr/)rrrRrrr)r1placesrFr@r*r*r,_roundV s  zDecimal._roundcCs|jr"|j|d}|r|St|S|jdkr4t|S|sFt|jddS|dkrTt}|dkrb|j}|d|}||kr| t | t |S)aVRounds to a nearby integer. If no rounding mode is specified, take the rounding mode from the context. This method raises the Rounded and Inexact flags when appropriate. See also: to_integral_value, which does exactly the same as this method except that it doesn't raise Inexact or Rounded. rMr'rSN) rRrrrQr;r<rrFrrjr r r1rFr2r@r*r*r,to_integral_exactm s$      zDecimal.to_integral_exactcCs`|dkrt}|dkr|j}|jr>|j|d}|r6|St|S|jdkrPt|S|d|SdS)z@Rounds to the nearest integer, without raising inexact, rounded.NrMr')rrFrRrrrQrrCr*r*r,r s  zDecimal.to_integral_valuecCs|dkrt}|jrB|j|d}|r(|S|rB|jdkrBt|S|sdt|jd|jd}||S|jdkrz| t dS|j d}t |}|j d?}|j d@r|jd}t|jd?d}n|j}t|jdd?}||}|dkr|d |9}d } nt|d | \}} | } ||8}d|} || } | | kr:qJn | | d?} q"| oZ| | |k} | r|dkrz| d|} n| d| 9} ||7}n| d dkr| d7} tdt| |}|}|t} ||}| |_|S) zReturn the square root of self.NrMr'rSr_r/zsqrt(-x), x > 0rr#Tr)rrRrrr<rr;rQrrjr rGrorXrWrlr=rrf _shallow_copy _set_roundingrrF)r1r2r@rGoprclrr7rr:rrFr*r*r,sqrt s^              z Decimal.sqrtcCst|dd}|dkrt}|js&|jr~|}|}|s>|r~|dkrX|dkrX||S|dkrr|dkrr||S|||S||}|dkr||}|dkr|}n|}||S)zReturns the larger value. Like max(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. TrNr/r'rrrrRrrrr compare_totalr1rr2ZsnZonrHr@r*r*r,r s&       z Decimal.maxcCst|dd}|dkrt}|js&|jr~|}|}|s>|r~|dkrX|dkrX||S|dkrr|dkrr||S|||S||}|dkr||}|dkr|}n|}||S)zReturns the smaller value. Like min(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. TrNr/r'rrKrMr*r*r,r* s&       z Decimal.mincCs8|jr dS|jdkrdS|j|jd}|dt|kS)z"Returns whether self is an integerFr'TNrS)rRrQr=rl)r1restr*r*r,rL s  zDecimal._isintegercCs&|r|jdkrdS|jd|jdkS)z:Returns True if self is even. Assumes self is an integer.r'Trr)rQr=rr*r*r,rU szDecimal._isevencCs2z|jt|jdWStk r,YdSXdS)z$Return the adjusted exponent of selfr/r'N)rQrlr=rxrr*r*r,r[ szDecimal.adjustedcCs|S)zReturns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. r*rr*r*r, canonicalc szDecimal.canonicalcCs.t|dd}|||}|r |S|j||dS)zCompares self to the other operand numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. TrrM)rrrrr*r*r,compare_signalk s   zDecimal.compare_signalcCs`t|dd}|jr|jstS|js,|jr,tS|j}|}|}|sL|r||krt|j|jf}t|j|jf}||kr|rtStS||kr|rtStStS|r|dkrtS|dkrtS|dkrtS|dkrtSn2|dkrtS|dkrtS|dkrtS|dkrtS||krtS||kr$tS|j|jkr@|rReturn True if self is a qNaN or sNaN; otherwise return False.rarZrr*r*r,r; szDecimal.is_nancCs*|js |sdS|dkrt}|j|kS)z?Return True if self is a normal number; otherwise return False.FN)rRrr>rrr*r*r, is_normal? s  zDecimal.is_normalcCs |jdkS)z;Return True if self is a quiet NaN; otherwise return False.r:rZrr*r*r,rG szDecimal.is_qnancCs |jdkS)z8Return True if self is negative; otherwise return False.r/)r<rr*r*r, is_signedK szDecimal.is_signedcCs |jdkS)z?Return True if self is a signaling NaN; otherwise return False.r[rZrr*r*r,rO szDecimal.is_snancCs*|js |sdS|dkrt}||jkS)z9Return True if self is subnormal; otherwise return False.FN)rRrrr>rr*r*r, is_subnormalS s  zDecimal.is_subnormalcCs|j o|jdkS)z6Return True if self is a zero; otherwise return False.rSrrr*r*r,is_zero[ szDecimal.is_zerocCs|jt|jd}|dkr4tt|dddS|dkrXttd|dddSt|}|j|j}}|dkrt|d| }t|}t|t|||kS|ttd| |dS)zCompute a lower bound for the adjusted exponent of self.ln(). In other words, compute r such that self.ln() >= 10**r. Assumes that self is finite and positive and that self != 1. r/rrrr'rQrlr=rfrorWrXr1rWrGrHrnumZdenr*r*r, _ln_exp_bound_ szDecimal._ln_exp_boundc Cs|dkrt}|j|d}|r"|S|s*tS|dkr:tS|tkrFtS|jdkr\|t dSt |}|j |j }}|j }||d}t|||}|ddttt||drq|d7}qtt |d ktt|| }|}|t} ||}| |_|S) z/Returns the natural (base e) logarithm of self.NrMr/zln of a negative valuer_rrr]r')rr_NegativeInfinityr _Infinityr1rRr<rjr rorWrXrGrc_dlogrlrfrnr;rErFrrrF r1r2r@rGrHrr'rArrFr*r*r,lnx s:    $   z Decimal.lncCs|jt|jd}|dkr,tt|dS|dkrHttd|dSt|}|j|j}}|dkrt|d| }td|}t|t|||kdStd| |}t|||dkdS) zCompute a lower bound for the adjusted exponent of self.log10(). In other words, find r such that self.log10() >= 10**r. Assumes that self is finite and positive and that self != 1. r/rrr'rr_Z231r`rar*r*r,r2 s  zDecimal._log10_exp_boundc CsF|dkrt}|j|d}|r"|S|s*tS|dkr:tS|jdkrP|tdS|jddkr|jdddt |jdkrt |j t |jd}nt |}|j |j}}|j}||d}t|||}|d d t tt||drq|d 7}qtt |dktt|| }|}|t} ||}| |_|S) z&Returns the base 10 logarithm of self.NrMr/zlog10 of a negative valuer'rrSr_rrr])rrrdrrer<rjr r=rlrrQrorWrXrGr2_dlog10rfrnr;rErFrrrFrgr*r*r,log10 s:   . $   z Decimal.log10cCsV|j|d}|r|S|dkr"t}|r.tS|s@|tddSt|}||S)aM Returns the exponent of the magnitude of self's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of self (as though it were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). rMNzlogb(0)r/) rrrrerjr rrrrr*r*r,logb s  z Decimal.logbcCs6|jdks|jdkrdS|jD]}|dkrdSqdS)zReturn True if self is a logical operand. For being logical, it must be a finite number with a sign of 0, an exponent of 0, and a coefficient whose digits must all be either 0 or 1. r'FZ01T)r<rQr=)r1digr*r*r, _islogical s  zDecimal._islogicalcCs|jt|}|dkr$d||}n|dkr<||j d}|jt|}|dkr`d||}n|dkrx||j d}||fS)Nr'rS)rGrl)r1r2opaopbZdifr*r*r, _fill_logical' szDecimal._fill_logicalcCsz|dkrt}t|dd}|r*|s4|tS|||j|j\}}dddt||D}t d| dptddS) z;Applies an 'and' operation between self and other's digits.NTrrUcSs$g|]\}}tt|t|@qSr*rfrW.0r/br*r*r, B sz'Decimal.logical_and..r'rS rrrnrjr rqr=rtzipr;rmr1rr2rorprr*r*r, logical_and4 s  zDecimal.logical_andcCs(|dkrt}|tdd|jd|S)zInvert all its digits.Nr'r)r logical_xorr;rGrr*r*r,logical_invertE s zDecimal.logical_invertcCsz|dkrt}t|dd}|r*|s4|tS|||j|j\}}dddt||D}t d| dptddS) z:Applies an 'or' operation between self and other's digits.NTrrUcSs$g|]\}}tt|t|BqSr*rrrsr*r*r,rvZ sz&Decimal.logical_or..r'rSrwryr*r*r, logical_orL s  zDecimal.logical_orcCsz|dkrt}t|dd}|r*|s4|tS|||j|j\}}dddt||D}t d| dptddS) z;Applies an 'xor' operation between self and other's digits.NTrrUcSs$g|]\}}tt|t|AqSr*rrrsr*r*r,rvk sz'Decimal.logical_xor..r'rSrwryr*r*r,r{] s  zDecimal.logical_xorcCst|dd}|dkrt}|js&|jr~|}|}|s>|r~|dkrX|dkrX||S|dkrr|dkrr||S|||S||}|dkr||}|dkr|}n|}||Sz8Compares the values numerically with their sign ignored.TrNr/r'r rrrRrrrrrrLrMr*r*r,max_magn s&      zDecimal.max_magcCst|dd}|dkrt}|js&|jr~|}|}|s>|r~|dkrX|dkrX||S|dkrr|dkrr||S|||S||}|dkr||}|dkr|}n|}||Sr~rrMr*r*r,min_mag s&      zDecimal.min_magcCs|dkrt}|j|d}|r"|S|dkr2tS|dkrTtdd|j|S|}|t | | |}||kr|S| tdd| d|S)z=Returns the largest representable number smaller than itself.NrMrr/r'rEr)rrrrdr;rGrrNrFr_ignore_all_flagsrrrr1r2r@Znew_selfr*r*r, next_minus s$     zDecimal.next_minuscCs|dkrt}|j|d}|r"|S|dkr2tS|dkrTtdd|j|S|}|t | | |}||kr|S| tdd| d|S)z=Returns the smallest representable number larger than itself.NrMr/rrEr'r)rrrrer;rGrrNrFrrrrrrr*r*r, next_plus s$     zDecimal.next_pluscCst|dd}|dkrt}|||}|r.|S||}|dkrJ||S|dkr^||}n ||}|r|t d|j |t |t nD| |jkr|t|t|t |t |s|t|S)aReturns the number closest to self, in the direction towards other. The result is the closest representable number to self (excluding self) that is in the direction towards other, unless both have the same value. If the two operands are numerically equal, then the result is a copy of self with the sign set to be the same as the sign of other. TrNr'rz Infinite result from next_toward)rrrrrUrrrrjrr<r r rr>rr r)r1rr2r@Z comparisonr*r*r, next_toward s6             zDecimal.next_towardcCs|r dS|rdS|}|dkr,dS|dkr8dS|rN|jrJdSdS|d kr\t}|j|d rv|jrrd Sd S|jrd SdSd S)aReturns an indication of the class of self. The class is one of the following strings: sNaN NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity rrr/z +Infinityrz -Infinityz-Zeroz+ZeroNrMz -Subnormalz +Subnormalz-Normalz+Normal)rrrr^r<rr])r1r2infr*r*r, number_classs, zDecimal.number_classcCstdS)z'Just returns 10, as this is Decimal, :)rrrr*r*r,radix0sz Decimal.radixcCs|dkrt}t|dd}|||}|r.|S|jdkrB|tS|j t|kr`|jksln|tS|r|t |St|}|j }|jt |}|dkrd||}n|dkr|| d}||d|d|}t |j |dpd|jS)z5Returns a rotated copy of self, value-of-other times.NTrr'rSrrrrQrjr rGrWrrr=rlr;r<rm)r1rr2r@torotrotdigtopadZrotatedr*r*r,rotate4s0       zDecimal.rotatecCs|dkrt}t|dd}|||}|r.|S|jdkrB|tSd|j|j}d|j|j}|t|krz|ksn|tS| rt |St |j |j |jt|}||}|S)z>Returns self operand after adding the second value to its exp.NTrr'rr_)rrrrQrjr rHrGrWrrr;r<r=r)r1rr2r@ZliminfZlimsuprr*r*r,scalebUs"      zDecimal.scalebcCs|dkrt}t|dd}|||}|r.|S|jdkrB|tS|j t|kr`|jksln|tS|r|t |St|}|j }|jt |}|dkrd||}n|dkr|| d}|dkr|d|}n|d|}||j d}t |j |dp d|jS)z5Returns a shifted copy of self, value-of-other times.NTrr'rSr)r1rr2r@rrrZshiftedr*r*r,rns6       z Decimal.shiftcCs|jt|ffSr)) __class__rfrr*r*r, __reduce__szDecimal.__reduce__cCst|tkr|S|t|Sr)typerrrfrr*r*r,__copy__s zDecimal.__copy__cCst|tkr|S|t|Sr)r)r1Zmemor*r*r, __deepcopy__s zDecimal.__deepcopy__cCsJ|dkrt}t||d}|jrXt|j|}t|}|ddkrL|d7}t|||S|ddkrvddg|j|d<|ddkrt |j|j |j d}|j }|d}|dk r|dd kr| |d |}nF|dd kr|| |}n*|dd krt|j |kr| ||}|s@|j d kr@|dd kr@|d |}|j t|j } |dd kr~|sx|dk rxd |} nd } nB|dd kr| } n.|dd kr|j d kr| dkr| } nd } | d krd} d| |j } nP| t|j kr|j d| t|j } d} n"|j d| p d} |j | d} | | } t|j| | | |S)a|Format a Decimal instance according to the given specifier. The specifier should be a standard format specifier, with the form described in PEP 3101. Formatting types 'e', 'E', 'f', 'F', 'g', 'G', 'n' and '%' are supported. If the formatting type is omitted it defaults to 'g' or 'G', depending on the value of context.capitals. N) _localeconvr%gGr_ precisioneEr/zfF%ZgGr'rrSrU)r_parse_format_specifierrR _format_signr<rfr _format_alignrr;r=rQrFrBrrl_format_number)r1Z specifierr2rspecrDbodyrFrrrr|r}rXr*r*r, __format__sZ               zDecimal.__format__)rSN)NN)N)N)N)N)N)N)FN)N)N)N)TN)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)NN)N)N)NN)N)NN)NN)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)NN)r5r6r7r8 __slots__rd classmethodrwrrrrrrrrrrrrrrrrrrrrrr__radd__rrr__rmul__rrrrrrrrrrrr __trunc__propertyrrrrr>rrrrrrr r r dictrrrrrrr0r9r:r=rr@rrBrDr to_integralrJrrrrrrOrPrLrTrrrUrXrXrYr?rr[rr\rr]r^rcrhr2rkrlrnrqrzr|r}r{rrrrrrrrrrrrrrr*r*r*r,rs  , !@  2 4    V   7 ;!  $    K       f  > , Un Y   = "   c * "  I   K   2 3          . * !  'FcCs&tt}||_||_||_||_|S)zCreate a decimal instance directly, without any validation, normalization (e.g. removal of leading zeros) or argument conversion. This function is for *internal use only*. )rcrdrr<r=rQrR)rDZ coefficientrZspecialr1r*r*r,r;s  r;c@s(eZdZdZddZddZddZdS) rPzContext manager class to support localcontext(). Sets a copy of the supplied context in __enter__() and restores the previous decimal context in __exit__() cCs||_dSr))rN new_context)r1rr*r*r,__init__sz_ContextManager.__init__cCst|_t|j|jSr))r saved_contextrrrr*r*r, __enter__s z_ContextManager.__enter__cCst|jdSr))rr)r1tvtbr*r*r,__exit__sz_ContextManager.__exit__N)r5r6r7r8rrrr*r*r*r,rPsrPc @seZdZdZdddZddZddZd d Zd d Zd dZ ddZ ddZ ddZ ddZ ddZeZdddZddZddZdd ZdZd!d"Zd#d$Zd%d&Zdd(d)Zd*d+Zd,d-Zd.d/Zd0d1Zd2d3Zd4d5Zd6d7Zd8d9Z d:d;Z!dd?Z#d@dAZ$dBdCZ%dDdEZ&dFdGZ'dHdIZ(dJdKZ)dLdMZ*dNdOZ+dPdQZ,dRdSZ-dTdUZ.dVdWZ/dXdYZ0dZd[Z1d\d]Z2d^d_Z3d`daZ4dbdcZ5dddeZ6dfdgZ7dhdiZ8djdkZ9dldmZ:dndoZ;dpdqZdvdwZ?dxdyZ@dzd{ZAd|d}ZBd~dZCddZDddZEddZFddZGdddZHddZIddZJddZKddZLddZMddZNddZOddZPddZQddZRddZSddZTddZUddZVeVZWdS)raContains the context for a Decimal instance. Contains: prec - precision (for use in rounding, division, square roots..) rounding - rounding type (how you round) traps - If traps[exception] = 1, then the exception is raised when it is caused. Otherwise, a value is substituted in. flags - When an exception is caused, flags[exception] is set. (Whether or not the trap_enabler is set) Should be reset by user of Decimal instance. Emin - Minimum exponent Emax - Maximum exponent capitals - If 1, 1*10^1 is printed as 1E+1. If 0, printed as 1e1 clamp - If 1, change exponents if too high (Default 0) Nc s>zt} Wntk rYnX|dk r*|n| j|_|dk r>|n| j|_|dk rR|n| j|_|dk rf|n| j|_|dk rz|n| j|_|dk r|n| j|_| dkrg|_n| |_dkr| j |_ n.t t st fddt D|_ n|_ dkr t t d|_n0t t s4t fddt D|_n|_dS)Nc3s|]}|t|kfVqdSr)rWrtrr5r*r, Isz#Context.__init__..r'c3s|]}|t|kfVqdSr)rrr6r*r,rPs)r NameErrorrGrFr>rHrr_ignored_flagsr5rNrerr4fromkeysr6) r1rGrFr>rHrrr6r5rZdcr*)r6r5r,r0s.   zContext.__init__cCst|tstd||dkr<||krtd||||fnJ|dkrb||krtd||||fn$||ksr||krtd||||ft|||S)Nz%s must be an integer-infz%s must be in [%s, %d]. got: %srz%s must be in [%d, %s]. got: %sz%s must be in [%d, %d]. got %s)rerWrxrrrc __setattr__)r1namerzZvminZvmaxr*r*r,_set_integer_checkTs  zContext._set_integer_checkcCs`t|tstd||D]}|tkrtd|qtD]}||kr8td|q8t|||S)Nz%s must be a signal dictz%s is not a valid signal dict)rerrxr4KeyErrorrcr)r1rrkeyr*r*r,_set_signal_dictbs  zContext._set_signal_dictcCs|dkr|||ddS|dkr0|||ddS|dkrH|||ddS|dkr`|||ddS|d krx|||ddS|d kr|tkrtd |t|||S|d ks|d kr|||S|dkrt|||Std|dS)NrGr/rr>rr'rHrrrFz%s: invalid rounding moder6r5rz.'decimal.Context' object has no attribute '%s')r_rounding_modesrxrcrrAttributeError)r1rrzr*r*r,rms*  zContext.__setattr__cCstd|dS)Nz%s cannot be deleted)r)r1rr*r*r, __delattr__szContext.__delattr__c CsNdd|jD}dd|jD}|j|j|j|j|j|j|j ||ffS)NcSsg|]\}}|r|qSr*r*rtZsigrr*r*r,rvsz&Context.__reduce__..cSsg|]\}}|r|qSr*r*rr*r*r,rvs) r6itemsr5rrGrFr>rHrr)r1r6r5r*r*r,rszContext.__reduce__cCs|g}|dt|dd|jD}|dd|ddd|jD}|dd|dd|d S) zShow the current context.zrContext(prec=%(prec)d, rounding=%(rounding)s, Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, clamp=%(clamp)dcSsg|]\}}|r|jqSr*r5)rtrrr*r*r,rvsz$Context.__repr__..zflags=[z, ]cSsg|]\}}|r|jqSr*r)rtrrr*r*r,rvsztraps=[))rsvarsr6rrtr5)r1rnamesr*r*r,rszContext.__repr__cCs|jD]}d|j|<qdS)zReset all flags to zeror'Nrr1flagr*r*r,rOs zContext.clear_flagscCs|jD]}d|j|<qdS)zReset all traps to zeror'Nrrr*r*r, clear_trapss zContext.clear_trapsc Cs.t|j|j|j|j|j|j|j|j|j }|S)z!Returns a shallow copy from self.) rrGrFr>rHrrr6r5rr1Zncr*r*r,rEszContext._shallow_copyc Cs6t|j|j|j|j|j|j|j|j |j }|S)zReturns a deep copy from self.) rrGrFr>rHrrr6rNr5rrr*r*r,rNsz Context.copycGsZt||}||jkr(|j|f|Sd|j|<|j|sN|j|f|S||dS)a#Handles an error If the flag is in _ignored_flags, returns the default response. Otherwise, it sets the flag, then, if the corresponding trap_enabler is set, it reraises the exception. Otherwise, it returns the default value after setting the flag. r/N)_condition_maprJrr3r6r5)r1Z conditionZ explanationr+errorr*r*r,rjs    zContext._raise_errorcCs |jtS)z$Ignore all flags, if they are raised) _ignore_flagsr4rr*r*r,rszContext._ignore_all_flagscGs|jt||_t|S)z$Ignore the flags, if they are raised)rrp)r1r6r*r*r,rszContext._ignore_flagscGs8|rt|dttfr|d}|D]}|j|q"dS)z+Stop ignoring the flags, if they are raisedr'N)rerqrprremove)r1r6rr*r*r, _regard_flagsszContext._regard_flagscCst|j|jdS)z!Returns Etiny (= Emin - prec + 1)r/)rWr>rGrr*r*r,rsz Context.EtinycCst|j|jdS)z,Returns maximum exponent (= Emax - prec + 1)r/)rWrHrGrr*r*r,rsz Context.EtopcCs|j}||_|S)aSets the rounding type. Sets the rounding type, and returns the current (previous) rounding type. Often used like: context = context.copy() # so you don't change the calling context # if an error occurs in the middle. rounding = context._set_rounding(ROUND_UP) val = self.__sub__(other, context=context) context._set_rounding(rounding) This will make it round up for that operation. )rF)r1rrFr*r*r,rFszContext._set_roundingrScCsjt|tr*||ksd|kr*|tdSt||d}|r`t|j|j |j kr`|tdS| |S)zCreates a new Decimal instance but using self as context. This method implements the to-number operation of the IBM Decimal specification.rTzAtrailing or leading whitespace and underscores are not permitted.rMzdiagnostic info too long in NaN) rerfrhrjrrrrlr=rGrr)r1rbrr*r*r,create_decimals zContext.create_decimalcCst|}||S)aCreates a new Decimal instance from a float but rounding using self as the context. >>> context = Context(prec=5, rounding=ROUND_DOWN) >>> context.create_decimal_from_float(3.1415926535897932) Decimal('3.1415') >>> context = Context(prec=5, traps=[Inexact]) >>> context.create_decimal_from_float(3.1415926535897932) Traceback (most recent call last): ... decimal.Inexact: None )rrwr)r1rrr*r*r,create_decimal_from_floats z!Context.create_decimal_from_floatcCst|dd}|j|dS)a[Returns the absolute value of the operand. If the operand is negative, the result is the same as using the minus operation on the operand. Otherwise, the result is the same as using the plus operation on the operand. >>> ExtendedContext.abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.abs(Decimal('101.5')) Decimal('101.5') >>> ExtendedContext.abs(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.abs(-1) Decimal('1') TrrM)rrr1r/r*r*r,rn!s z Context.abscCs8t|dd}|j||d}|tkr0td|n|SdS)aReturn the sum of the two operands. >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) Decimal('19.00') >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) Decimal('1.02E+4') >>> ExtendedContext.add(1, Decimal(2)) Decimal('3') >>> ExtendedContext.add(Decimal(8), 5) Decimal('13') >>> ExtendedContext.add(5, 5) Decimal('10') TrrMUnable to convert %s to DecimalN)rrrrxr1r/rurr*r*r,add6s  z Context.addcCst||Sr))rfrrr*r*r,_applyKszContext._applycCst|tstd|S)zReturns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. >>> ExtendedContext.canonical(Decimal('2.50')) Decimal('2.50') z,canonical requires a Decimal as an argument.)rerrxrOrr*r*r,rONs zContext.canonicalcCst|dd}|j||dS)aCompares values numerically. If the signs of the operands differ, a value representing each operand ('-1' if the operand is less than zero, '0' if the operand is zero or negative zero, or '1' if the operand is greater than zero) is used in place of that operand for the comparison instead of the actual operand. The comparison is then effected by subtracting the second operand from the first and then returning a value according to the result of the subtraction: '-1' if the result is less than zero, '0' if the result is zero or negative zero, or '1' if the result is greater than zero. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) Decimal('0') >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) Decimal('1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) Decimal('1') >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) Decimal('-1') >>> ExtendedContext.compare(1, 2) Decimal('-1') >>> ExtendedContext.compare(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare(1, Decimal(2)) Decimal('-1') TrrM)rrr1r/rur*r*r,r[s! zContext.comparecCst|dd}|j||dS)aCompares the values of the two operands numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. >>> c = ExtendedContext >>> c.compare_signal(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) Decimal('NaN') >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) Decimal('NaN') >>> print(c.flags[InvalidOperation]) 1 >>> c.compare_signal(-1, 2) Decimal('-1') >>> c.compare_signal(Decimal(-1), 2) Decimal('-1') >>> c.compare_signal(-1, Decimal(2)) Decimal('-1') TrrM)rrPrr*r*r,rPs zContext.compare_signalcCst|dd}||S)a+Compares two operands using their abstract representation. This is not like the standard compare, which use their numerical value. Note that a total ordering is defined for all possible abstract representations. >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) Decimal('0') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) Decimal('1') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) Decimal('-1') >>> ExtendedContext.compare_total(1, 2) Decimal('-1') >>> ExtendedContext.compare_total(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare_total(1, Decimal(2)) Decimal('-1') Tr)rrLrr*r*r,rLs zContext.compare_totalcCst|dd}||S)zCompares two operands using their abstract representation ignoring sign. Like compare_total, but with operand's sign ignored and assumed to be 0. Tr)rrTrr*r*r,rTs zContext.compare_total_magcCst|dd}|S)aReturns a copy of the operand with the sign set to 0. >>> ExtendedContext.copy_abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.copy_abs(-1) Decimal('1') Tr)rrrr*r*r,rs zContext.copy_abscCst|dd}t|S)aReturns a copy of the decimal object. >>> ExtendedContext.copy_decimal(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_decimal(Decimal('-1.00')) Decimal('-1.00') >>> ExtendedContext.copy_decimal(1) Decimal('1') Tr)rrrr*r*r, copy_decimals zContext.copy_decimalcCst|dd}|S)a(Returns a copy of the operand with the sign inverted. >>> ExtendedContext.copy_negate(Decimal('101.5')) Decimal('-101.5') >>> ExtendedContext.copy_negate(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.copy_negate(1) Decimal('-1') Tr)rrrr*r*r,rs zContext.copy_negatecCst|dd}||S)aCopies the second operand's sign to the first one. In detail, it returns a copy of the first operand with the sign equal to the sign of the second operand. >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(1, -2) Decimal('-1') >>> ExtendedContext.copy_sign(Decimal(1), -2) Decimal('-1') >>> ExtendedContext.copy_sign(1, Decimal(-2)) Decimal('-1') Tr)rrUrr*r*r,rUs zContext.copy_signcCs8t|dd}|j||d}|tkr0td|n|SdS)aDecimal division in a specified context. >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) Decimal('0.333333333') >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) Decimal('0.666666667') >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) Decimal('2.5') >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) Decimal('0.1') >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) Decimal('1') >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) Decimal('4.00') >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) Decimal('1.20') >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) Decimal('10') >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) Decimal('1000') >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) Decimal('1.20E+6') >>> ExtendedContext.divide(5, 5) Decimal('1') >>> ExtendedContext.divide(Decimal(5), 5) Decimal('1') >>> ExtendedContext.divide(5, Decimal(5)) Decimal('1') TrrMrN)rrrrxrr*r*r,divides  zContext.dividecCs8t|dd}|j||d}|tkr0td|n|SdS)a/Divides two numbers and returns the integer part of the result. >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) Decimal('0') >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) Decimal('3') >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) Decimal('3') >>> ExtendedContext.divide_int(10, 3) Decimal('3') >>> ExtendedContext.divide_int(Decimal(10), 3) Decimal('3') >>> ExtendedContext.divide_int(10, Decimal(3)) Decimal('3') TrrMrN)rrrrxrr*r*r, divide_int+s  zContext.divide_intcCs8t|dd}|j||d}|tkr0td|n|SdS)aReturn (a // b, a % b). >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) (Decimal('2'), Decimal('2')) >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(Decimal(8), 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, Decimal(4)) (Decimal('2'), Decimal('0')) TrrMrN)rrrrxrr*r*r,rBs  zContext.divmodcCst|dd}|j|dS)a#Returns e ** a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.exp(Decimal('-Infinity')) Decimal('0') >>> c.exp(Decimal('-1')) Decimal('0.367879441') >>> c.exp(Decimal('0')) Decimal('1') >>> c.exp(Decimal('1')) Decimal('2.71828183') >>> c.exp(Decimal('0.693147181')) Decimal('2.00000000') >>> c.exp(Decimal('+Infinity')) Decimal('Infinity') >>> c.exp(10) Decimal('22026.4658') TrrM)rrXrr*r*r,rXWs z Context.expcCst|dd}|j|||dS)a Returns a multiplied by b, plus c. The first two operands are multiplied together, using multiply, the third operand is then added to the result of that multiplication, using add, all with only one final rounding. >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) Decimal('22') >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) Decimal('-8') >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) Decimal('1.38435736E+12') >>> ExtendedContext.fma(1, 3, 4) Decimal('7') >>> ExtendedContext.fma(1, Decimal(3), 4) Decimal('7') >>> ExtendedContext.fma(1, 3, Decimal(4)) Decimal('7') TrrM)rr)r1r/rurHr*r*r,ros z Context.fmacCst|tstd|S)aReturn True if the operand is canonical; otherwise return False. Currently, the encoding of a Decimal instance is always canonical, so this method returns True for any Decimal. >>> ExtendedContext.is_canonical(Decimal('2.50')) True z/is_canonical requires a Decimal as an argument.)rerrxrXrr*r*r,rXs zContext.is_canonicalcCst|dd}|S)a,Return True if the operand is finite; otherwise return False. A Decimal instance is considered finite if it is neither infinite nor a NaN. >>> ExtendedContext.is_finite(Decimal('2.50')) True >>> ExtendedContext.is_finite(Decimal('-0.3')) True >>> ExtendedContext.is_finite(Decimal('0')) True >>> ExtendedContext.is_finite(Decimal('Inf')) False >>> ExtendedContext.is_finite(Decimal('NaN')) False >>> ExtendedContext.is_finite(1) True Tr)rrYrr*r*r,rYs zContext.is_finitecCst|dd}|S)aUReturn True if the operand is infinite; otherwise return False. >>> ExtendedContext.is_infinite(Decimal('2.50')) False >>> ExtendedContext.is_infinite(Decimal('-Inf')) True >>> ExtendedContext.is_infinite(Decimal('NaN')) False >>> ExtendedContext.is_infinite(1) False Tr)rr?rr*r*r,r?s zContext.is_infinitecCst|dd}|S)aOReturn True if the operand is a qNaN or sNaN; otherwise return False. >>> ExtendedContext.is_nan(Decimal('2.50')) False >>> ExtendedContext.is_nan(Decimal('NaN')) True >>> ExtendedContext.is_nan(Decimal('-sNaN')) True >>> ExtendedContext.is_nan(1) False Tr)rrrr*r*r,rs zContext.is_nancCst|dd}|j|dS)aReturn True if the operand is a normal number; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_normal(Decimal('2.50')) True >>> c.is_normal(Decimal('0.1E-999')) False >>> c.is_normal(Decimal('0.00')) False >>> c.is_normal(Decimal('-Inf')) False >>> c.is_normal(Decimal('NaN')) False >>> c.is_normal(1) True TrrM)rr[rr*r*r,r[s zContext.is_normalcCst|dd}|S)aHReturn True if the operand is a quiet NaN; otherwise return False. >>> ExtendedContext.is_qnan(Decimal('2.50')) False >>> ExtendedContext.is_qnan(Decimal('NaN')) True >>> ExtendedContext.is_qnan(Decimal('sNaN')) False >>> ExtendedContext.is_qnan(1) False Tr)rrrr*r*r,rs zContext.is_qnancCst|dd}|S)aReturn True if the operand is negative; otherwise return False. >>> ExtendedContext.is_signed(Decimal('2.50')) False >>> ExtendedContext.is_signed(Decimal('-12')) True >>> ExtendedContext.is_signed(Decimal('-0')) True >>> ExtendedContext.is_signed(8) False >>> ExtendedContext.is_signed(-8) True Tr)rr\rr*r*r,r\s zContext.is_signedcCst|dd}|S)aTReturn True if the operand is a signaling NaN; otherwise return False. >>> ExtendedContext.is_snan(Decimal('2.50')) False >>> ExtendedContext.is_snan(Decimal('NaN')) False >>> ExtendedContext.is_snan(Decimal('sNaN')) True >>> ExtendedContext.is_snan(1) False Tr)rrrr*r*r,rs zContext.is_snancCst|dd}|j|dS)aReturn True if the operand is subnormal; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_subnormal(Decimal('2.50')) False >>> c.is_subnormal(Decimal('0.1E-999')) True >>> c.is_subnormal(Decimal('0.00')) False >>> c.is_subnormal(Decimal('-Inf')) False >>> c.is_subnormal(Decimal('NaN')) False >>> c.is_subnormal(1) False TrrM)rr]rr*r*r,r]s zContext.is_subnormalcCst|dd}|S)auReturn True if the operand is a zero; otherwise return False. >>> ExtendedContext.is_zero(Decimal('0')) True >>> ExtendedContext.is_zero(Decimal('2.50')) False >>> ExtendedContext.is_zero(Decimal('-0E+2')) True >>> ExtendedContext.is_zero(1) False >>> ExtendedContext.is_zero(0) True Tr)rr^rr*r*r,r^%s zContext.is_zerocCst|dd}|j|dS)aReturns the natural (base e) logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.ln(Decimal('0')) Decimal('-Infinity') >>> c.ln(Decimal('1.000')) Decimal('0') >>> c.ln(Decimal('2.71828183')) Decimal('1.00000000') >>> c.ln(Decimal('10')) Decimal('2.30258509') >>> c.ln(Decimal('+Infinity')) Decimal('Infinity') >>> c.ln(1) Decimal('0') TrrM)rrhrr*r*r,rh6s z Context.lncCst|dd}|j|dS)aReturns the base 10 logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.log10(Decimal('0')) Decimal('-Infinity') >>> c.log10(Decimal('0.001')) Decimal('-3') >>> c.log10(Decimal('1.000')) Decimal('0') >>> c.log10(Decimal('2')) Decimal('0.301029996') >>> c.log10(Decimal('10')) Decimal('1') >>> c.log10(Decimal('70')) Decimal('1.84509804') >>> c.log10(Decimal('+Infinity')) Decimal('Infinity') >>> c.log10(0) Decimal('-Infinity') >>> c.log10(1) Decimal('0') TrrM)rrkrr*r*r,rkLs z Context.log10cCst|dd}|j|dS)a4 Returns the exponent of the magnitude of the operand's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of the operand (as though the operand were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). >>> ExtendedContext.logb(Decimal('250')) Decimal('2') >>> ExtendedContext.logb(Decimal('2.50')) Decimal('0') >>> ExtendedContext.logb(Decimal('0.03')) Decimal('-2') >>> ExtendedContext.logb(Decimal('0')) Decimal('-Infinity') >>> ExtendedContext.logb(1) Decimal('0') >>> ExtendedContext.logb(10) Decimal('1') >>> ExtendedContext.logb(100) Decimal('2') TrrM)rrlrr*r*r,rlhs z Context.logbcCst|dd}|j||dS)aApplies the logical operation 'and' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) Decimal('1000') >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) Decimal('10') >>> ExtendedContext.logical_and(110, 1101) Decimal('100') >>> ExtendedContext.logical_and(Decimal(110), 1101) Decimal('100') >>> ExtendedContext.logical_and(110, Decimal(1101)) Decimal('100') TrrM)rrzrr*r*r,rzs zContext.logical_andcCst|dd}|j|dS)a Invert all the digits in the operand. The operand must be a logical number. >>> ExtendedContext.logical_invert(Decimal('0')) Decimal('111111111') >>> ExtendedContext.logical_invert(Decimal('1')) Decimal('111111110') >>> ExtendedContext.logical_invert(Decimal('111111111')) Decimal('0') >>> ExtendedContext.logical_invert(Decimal('101010101')) Decimal('10101010') >>> ExtendedContext.logical_invert(1101) Decimal('111110010') TrrM)rr|rr*r*r,r|s zContext.logical_invertcCst|dd}|j||dS)aApplies the logical operation 'or' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) Decimal('1110') >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) Decimal('1110') >>> ExtendedContext.logical_or(110, 1101) Decimal('1111') >>> ExtendedContext.logical_or(Decimal(110), 1101) Decimal('1111') >>> ExtendedContext.logical_or(110, Decimal(1101)) Decimal('1111') TrrM)rr}rr*r*r,r}s zContext.logical_orcCst|dd}|j||dS)aApplies the logical operation 'xor' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) Decimal('110') >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) Decimal('1101') >>> ExtendedContext.logical_xor(110, 1101) Decimal('1011') >>> ExtendedContext.logical_xor(Decimal(110), 1101) Decimal('1011') >>> ExtendedContext.logical_xor(110, Decimal(1101)) Decimal('1011') TrrM)rr{rr*r*r,r{s zContext.logical_xorcCst|dd}|j||dS)amax compares two values numerically and returns the maximum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the maximum (closer to positive infinity) of the two operands is chosen as the result. >>> ExtendedContext.max(Decimal('3'), Decimal('2')) Decimal('3') >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) Decimal('3') >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) Decimal('1') >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max(1, 2) Decimal('2') >>> ExtendedContext.max(Decimal(1), 2) Decimal('2') >>> ExtendedContext.max(1, Decimal(2)) Decimal('2') TrrM)rrrr*r*r,rs z Context.maxcCst|dd}|j||dS)aCompares the values numerically with their sign ignored. >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) Decimal('-10') >>> ExtendedContext.max_mag(1, -2) Decimal('-2') >>> ExtendedContext.max_mag(Decimal(1), -2) Decimal('-2') >>> ExtendedContext.max_mag(1, Decimal(-2)) Decimal('-2') TrrM)rrrr*r*r,rs zContext.max_magcCst|dd}|j||dS)amin compares two values numerically and returns the minimum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the minimum (closer to negative infinity) of the two operands is chosen as the result. >>> ExtendedContext.min(Decimal('3'), Decimal('2')) Decimal('2') >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) Decimal('-10') >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) Decimal('1.0') >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.min(1, 2) Decimal('1') >>> ExtendedContext.min(Decimal(1), 2) Decimal('1') >>> ExtendedContext.min(1, Decimal(29)) Decimal('1') TrrM)rrrr*r*r,rs z Context.mincCst|dd}|j||dS)aCompares the values numerically with their sign ignored. >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) Decimal('-2') >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) Decimal('-3') >>> ExtendedContext.min_mag(1, -2) Decimal('1') >>> ExtendedContext.min_mag(Decimal(1), -2) Decimal('1') >>> ExtendedContext.min_mag(1, Decimal(-2)) Decimal('1') TrrM)rrrr*r*r,r-s zContext.min_magcCst|dd}|j|dS)aMinus corresponds to unary prefix minus in Python. The operation is evaluated using the same rules as subtract; the operation minus(a) is calculated as subtract('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.minus(Decimal('1.3')) Decimal('-1.3') >>> ExtendedContext.minus(Decimal('-1.3')) Decimal('1.3') >>> ExtendedContext.minus(1) Decimal('-1') TrrM)rrrr*r*r,minus>s z Context.minuscCs8t|dd}|j||d}|tkr0td|n|SdS)amultiply multiplies two operands. If either operand is a special value then the general rules apply. Otherwise, the operands are multiplied together ('long multiplication'), resulting in a number which may be as long as the sum of the lengths of the two operands. >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) Decimal('3.60') >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) Decimal('21') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) Decimal('0.72') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) Decimal('-0.0') >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) Decimal('4.28135971E+11') >>> ExtendedContext.multiply(7, 7) Decimal('49') >>> ExtendedContext.multiply(Decimal(7), 7) Decimal('49') >>> ExtendedContext.multiply(7, Decimal(7)) Decimal('49') TrrMrN)rrrrxrr*r*r,multiplyOs  zContext.multiplycCst|dd}|j|dS)a"Returns the largest representable number smaller than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_minus(Decimal('1')) Decimal('0.999999999') >>> c.next_minus(Decimal('1E-1007')) Decimal('0E-1007') >>> ExtendedContext.next_minus(Decimal('-1.00000003')) Decimal('-1.00000004') >>> c.next_minus(Decimal('Infinity')) Decimal('9.99999999E+999') >>> c.next_minus(1) Decimal('0.999999999') TrrM)rrrr*r*r,ros zContext.next_minuscCst|dd}|j|dS)aReturns the smallest representable number larger than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_plus(Decimal('1')) Decimal('1.00000001') >>> c.next_plus(Decimal('-1E-1007')) Decimal('-0E-1007') >>> ExtendedContext.next_plus(Decimal('-1.00000003')) Decimal('-1.00000002') >>> c.next_plus(Decimal('-Infinity')) Decimal('-9.99999999E+999') >>> c.next_plus(1) Decimal('1.00000001') TrrM)rrrr*r*r,rs zContext.next_pluscCst|dd}|j||dS)aReturns the number closest to a, in direction towards b. The result is the closest representable number from the first operand (but not the first operand) that is in the direction towards the second operand, unless the operands have the same value. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.next_toward(Decimal('1'), Decimal('2')) Decimal('1.00000001') >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) Decimal('-0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) Decimal('-1.00000002') >>> c.next_toward(Decimal('1'), Decimal('0')) Decimal('0.999999999') >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) Decimal('0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) Decimal('-1.00000004') >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) Decimal('-0.00') >>> c.next_toward(0, 1) Decimal('1E-1007') >>> c.next_toward(Decimal(0), 1) Decimal('1E-1007') >>> c.next_toward(0, Decimal(1)) Decimal('1E-1007') TrrM)rrrr*r*r,rs zContext.next_towardcCst|dd}|j|dS)anormalize reduces an operand to its simplest form. Essentially a plus operation with all trailing zeros removed from the result. >>> ExtendedContext.normalize(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.normalize(Decimal('-2.0')) Decimal('-2') >>> ExtendedContext.normalize(Decimal('1.200')) Decimal('1.2') >>> ExtendedContext.normalize(Decimal('-120')) Decimal('-1.2E+2') >>> ExtendedContext.normalize(Decimal('120.00')) Decimal('1.2E+2') >>> ExtendedContext.normalize(Decimal('0.00')) Decimal('0') >>> ExtendedContext.normalize(6) Decimal('6') TrrM)rr=rr*r*r,r=s zContext.normalizecCst|dd}|j|dS)aReturns an indication of the class of the operand. The class is one of the following strings: -sNaN -NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.number_class(Decimal('Infinity')) '+Infinity' >>> c.number_class(Decimal('1E-10')) '+Normal' >>> c.number_class(Decimal('2.50')) '+Normal' >>> c.number_class(Decimal('0.1E-999')) '+Subnormal' >>> c.number_class(Decimal('0')) '+Zero' >>> c.number_class(Decimal('-0')) '-Zero' >>> c.number_class(Decimal('-0.1E-999')) '-Subnormal' >>> c.number_class(Decimal('-1E-10')) '-Normal' >>> c.number_class(Decimal('-2.50')) '-Normal' >>> c.number_class(Decimal('-Infinity')) '-Infinity' >>> c.number_class(Decimal('NaN')) 'NaN' >>> c.number_class(Decimal('-NaN')) 'NaN' >>> c.number_class(Decimal('sNaN')) 'sNaN' >>> c.number_class(123) '+Normal' TrrM)rrrr*r*r,rs/ zContext.number_classcCst|dd}|j|dS)aPlus corresponds to unary prefix plus in Python. The operation is evaluated using the same rules as add; the operation plus(a) is calculated as add('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.plus(Decimal('1.3')) Decimal('1.3') >>> ExtendedContext.plus(Decimal('-1.3')) Decimal('-1.3') >>> ExtendedContext.plus(-1) Decimal('-1') TrrM)rrrr*r*r,pluss z Context.pluscCs:t|dd}|j|||d}|tkr2td|n|SdS)a Raises a to the power of b, to modulo if given. With two arguments, compute a**b. If a is negative then b must be integral. The result will be inexact unless b is integral and the result is finite and can be expressed exactly in 'precision' digits. With three arguments, compute (a**b) % modulo. For the three argument form, the following restrictions on the arguments hold: - all three arguments must be integral - b must be nonnegative - at least one of a or b must be nonzero - modulo must be nonzero and have at most 'precision' digits The result of pow(a, b, modulo) is identical to the result that would be obtained by computing (a**b) % modulo with unbounded precision, but is computed more efficiently. It is always exact. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.power(Decimal('2'), Decimal('3')) Decimal('8') >>> c.power(Decimal('-2'), Decimal('3')) Decimal('-8') >>> c.power(Decimal('2'), Decimal('-3')) Decimal('0.125') >>> c.power(Decimal('1.7'), Decimal('8')) Decimal('69.7575744') >>> c.power(Decimal('10'), Decimal('0.301029996')) Decimal('2.00000000') >>> c.power(Decimal('Infinity'), Decimal('-1')) Decimal('0') >>> c.power(Decimal('Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('Infinity'), Decimal('1')) Decimal('Infinity') >>> c.power(Decimal('-Infinity'), Decimal('-1')) Decimal('-0') >>> c.power(Decimal('-Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('-Infinity'), Decimal('1')) Decimal('-Infinity') >>> c.power(Decimal('-Infinity'), Decimal('2')) Decimal('Infinity') >>> c.power(Decimal('0'), Decimal('0')) Decimal('NaN') >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) Decimal('11') >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) Decimal('-11') >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) Decimal('1') >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) Decimal('11') >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) Decimal('11729830') >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) Decimal('-0') >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) Decimal('1') >>> ExtendedContext.power(7, 7) Decimal('823543') >>> ExtendedContext.power(Decimal(7), 7) Decimal('823543') >>> ExtendedContext.power(7, Decimal(7), 2) Decimal('1') TrrMrN)rr9rrx)r1r/rurrr*r*r,powers I z Context.powercCst|dd}|j||dS)a Returns a value equal to 'a' (rounded), having the exponent of 'b'. The coefficient of the result is derived from that of the left-hand operand. It may be rounded using the current rounding setting (if the exponent is being increased), multiplied by a positive power of ten (if the exponent is being decreased), or is unchanged (if the exponent is already equal to that of the right-hand operand). Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision then an Invalid operation condition is raised. This guarantees that, unless there is an error condition, the exponent of the result of a quantize is always equal to that of the right-hand operand. Also unlike other operations, quantize will never raise Underflow, even if the result is subnormal and inexact. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) Decimal('2.170') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) Decimal('2.17') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) Decimal('2.2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) Decimal('2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) Decimal('0E+1') >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) Decimal('-Infinity') >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) Decimal('-0') >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) Decimal('-0E+5') >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) Decimal('217.0') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) Decimal('217') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) Decimal('2.2E+2') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) Decimal('2E+2') >>> ExtendedContext.quantize(1, 2) Decimal('1') >>> ExtendedContext.quantize(Decimal(1), 2) Decimal('1') >>> ExtendedContext.quantize(1, Decimal(2)) Decimal('1') TrrM)rrrr*r*r,res7 zContext.quantizecCstdS)zkJust returns 10, as this is Decimal, :) >>> ExtendedContext.radix() Decimal('10') rrrr*r*r,rsz Context.radixcCs8t|dd}|j||d}|tkr0td|n|SdS)aReturns the remainder from integer division. The result is the residue of the dividend after the operation of calculating integer division as described for divide-integer, rounded to precision digits if necessary. The sign of the result, if non-zero, is the same as that of the original dividend. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) Decimal('2.1') >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) Decimal('1.0') >>> ExtendedContext.remainder(22, 6) Decimal('4') >>> ExtendedContext.remainder(Decimal(22), 6) Decimal('4') >>> ExtendedContext.remainder(22, Decimal(6)) Decimal('4') TrrMrN)rrrrxrr*r*r,rs  zContext.remaindercCst|dd}|j||dS)aGReturns to be "a - b * n", where n is the integer nearest the exact value of "x / b" (if two integers are equally near then the even one is chosen). If the result is equal to 0 then its sign will be the sign of a. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) Decimal('-0.9') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) Decimal('-2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) Decimal('-0.3') >>> ExtendedContext.remainder_near(3, 11) Decimal('3') >>> ExtendedContext.remainder_near(Decimal(3), 11) Decimal('3') >>> ExtendedContext.remainder_near(3, Decimal(11)) Decimal('3') TrrM)rrrr*r*r,rs zContext.remainder_nearcCst|dd}|j||dS)aNReturns a rotated copy of a, b times. The coefficient of the result is a rotated copy of the digits in the coefficient of the first operand. The number of places of rotation is taken from the absolute value of the second operand, with the rotation being to the left if the second operand is positive or to the right otherwise. >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) Decimal('400000003') >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) Decimal('12') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) Decimal('891234567') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) Decimal('345678912') >>> ExtendedContext.rotate(1333333, 1) Decimal('13333330') >>> ExtendedContext.rotate(Decimal(1333333), 1) Decimal('13333330') >>> ExtendedContext.rotate(1333333, Decimal(1)) Decimal('13333330') TrrM)rrrr*r*r,rs zContext.rotatecCst|dd}||S)aReturns True if the two operands have the same exponent. The result is never affected by either the sign or the coefficient of either operand. >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) False >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) True >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) False >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) True >>> ExtendedContext.same_quantum(10000, -1) True >>> ExtendedContext.same_quantum(Decimal(10000), -1) True >>> ExtendedContext.same_quantum(10000, Decimal(-1)) True Tr)rr@rr*r*r,r@ s zContext.same_quantumcCst|dd}|j||dS)a3Returns the first operand after adding the second value its exp. >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) Decimal('0.0750') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) Decimal('7.50') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) Decimal('7.50E+3') >>> ExtendedContext.scaleb(1, 4) Decimal('1E+4') >>> ExtendedContext.scaleb(Decimal(1), 4) Decimal('1E+4') >>> ExtendedContext.scaleb(1, Decimal(4)) Decimal('1E+4') TrrM)rrrr*r*r,r$s zContext.scalebcCst|dd}|j||dS)a{Returns a shifted copy of a, b times. The coefficient of the result is a shifted copy of the digits in the coefficient of the first operand. The number of places to shift is taken from the absolute value of the second operand, with the shift being to the left if the second operand is positive or to the right otherwise. Digits shifted into the coefficient are zeros. >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) Decimal('400000000') >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) Decimal('0') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) Decimal('1234567') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) Decimal('345678900') >>> ExtendedContext.shift(88888888, 2) Decimal('888888800') >>> ExtendedContext.shift(Decimal(88888888), 2) Decimal('888888800') >>> ExtendedContext.shift(88888888, Decimal(2)) Decimal('888888800') TrrM)rrrr*r*r,r7s z Context.shiftcCst|dd}|j|dS)aSquare root of a non-negative number to context precision. If the result must be inexact, it is rounded using the round-half-even algorithm. >>> ExtendedContext.sqrt(Decimal('0')) Decimal('0') >>> ExtendedContext.sqrt(Decimal('-0')) Decimal('-0') >>> ExtendedContext.sqrt(Decimal('0.39')) Decimal('0.624499800') >>> ExtendedContext.sqrt(Decimal('100')) Decimal('10') >>> ExtendedContext.sqrt(Decimal('1')) Decimal('1') >>> ExtendedContext.sqrt(Decimal('1.0')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('1.00')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('7')) Decimal('2.64575131') >>> ExtendedContext.sqrt(Decimal('10')) Decimal('3.16227766') >>> ExtendedContext.sqrt(2) Decimal('1.41421356') >>> ExtendedContext.prec 9 TrrM)rrJrr*r*r,rJUs z Context.sqrtcCs8t|dd}|j||d}|tkr0td|n|SdS)a&Return the difference between the two operands. >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) Decimal('0.23') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) Decimal('0.00') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) Decimal('-0.77') >>> ExtendedContext.subtract(8, 5) Decimal('3') >>> ExtendedContext.subtract(Decimal(8), 5) Decimal('3') >>> ExtendedContext.subtract(8, Decimal(5)) Decimal('3') TrrMrN)rrrrxrr*r*r,subtractus  zContext.subtractcCst|dd}|j|dS)aConvert to a string, using engineering notation if an exponent is needed. Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the decimal place and may require the addition of either one or two trailing zeros. The operation is not affected by the context. >>> ExtendedContext.to_eng_string(Decimal('123E+1')) '1.23E+3' >>> ExtendedContext.to_eng_string(Decimal('123E+3')) '123E+3' >>> ExtendedContext.to_eng_string(Decimal('123E-10')) '12.3E-9' >>> ExtendedContext.to_eng_string(Decimal('-123E-12')) '-123E-12' >>> ExtendedContext.to_eng_string(Decimal('7E-7')) '700E-9' >>> ExtendedContext.to_eng_string(Decimal('7E+1')) '70' >>> ExtendedContext.to_eng_string(Decimal('0E+1')) '0.00E+3' TrrM)rrrr*r*r,rs zContext.to_eng_stringcCst|dd}|j|dS)zyConverts a number to a string, using scientific notation. The operation is not affected by the context. TrrM)rrrr*r*r, to_sci_strings zContext.to_sci_stringcCst|dd}|j|dS)akRounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting; Inexact and Rounded flags are allowed in this operation. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_exact(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_exact(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) Decimal('-Infinity') TrrM)rrDrr*r*r,rDs zContext.to_integral_exactcCst|dd}|j|dS)aLRounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting, except that no flags will be set. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_value(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_value(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_value(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_value(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_value(Decimal('-Inf')) Decimal('-Infinity') TrrM)rrrr*r*r,rs zContext.to_integral_value) NNNNNNNNN)N)rS)N)Xr5r6r7r8rrrrrrrrOrrErNrrjrrrrrrrFrrrnrrrOrrPrLrTrrrrUrrrrXrrXrYr?rr[rr\rr]r^rhrkrlrzr|r}r{rrrrrrrrrr=rrrrrrrrr@rrrJrrrrDrrr*r*r*r,rs $     $#   %  #2 P:&" c@s"eZdZdZdddZddZdS)rorDrWrXNcCsf|dkrd|_d|_d|_nFt|trD|j|_t|j|_|j|_n|d|_|d|_|d|_dS)Nr'r/r_)rDrWrXrerr<r=rQ)r1rzr*r*r,rs     z_WorkRep.__init__cCsd|j|j|jfS)Nz (%r, %r, %r)rrr*r*r,rsz_WorkRep.__repr__)N)r5r6r7rrrr*r*r*r,ros rocCs|j|jkr|}|}n|}|}tt|j}tt|j}|jtd||d}||jd|krpd|_||_|jd|j|j9_|j|_||fS)zcNormalizes op1, op2 to have the same exp and length of coefficient. Done during addition. rr_r/r)rXrlrfrWr)rrrGZtmprZtmp_lenZ other_lenrXr*r*r,rs rcCsb|dkr dS|dkr |d|Stt|}t|t|d}|| krPdS|d| SdS)a Given integers n and e, return n * 10**e if it's an integer, else None. The computation is designed to avoid computing large powers of 10 unnecessarily. >>> _decimal_lshift_exact(3, 4) 30000 >>> _decimal_lshift_exact(300, -999999999) # returns None r'rrSN)rfrnrlrstrip)r:rZstr_nZval_nr*r*r,r%(s   r%cCsB|dks|dkrtdd}||kr>||| |d?}}q|S)zClosest integer to the square root of the positive integer n. a is an initial approximation to the square root. Any positive integer will do for a, but the closer a is to the square root of n the faster convergence will be. r'z3Both arguments to _sqrt_nearest should be positive.r/)rr)r:r/rur*r*r, _sqrt_nearest=s rcCs2d|>||?}}|d||d@|d@|kS)zGiven an integer x and a nonnegative integer shift, return closest integer to x / 2**shift; use round-to-even in case of a tie. r/r_r*)r(rrurr*r*r,_rshift_nearestLsrcCs&t||\}}|d||d@|kS)zaClosest integer to a/b, a and b positive integers; rounds to even in the case of a tie. r_r/)r)r/rurrr*r*r, _div_nearestTsrrc Cs||}d}||kr(t|||>|ksD||krxt|||?|krxt||d>|t||t|||}|d7}q tdtt|d| }t||}t||}t|dddD]}t||t|||}qt|||S)aInteger approximation to M*log(x/M), with absolute error boundable in terms only of x/M. Given positive integers x and M, return an integer approximation to M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference between the approximation and the exact result is at most 22. For L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In both cases these are upper bounds on the error; it will usually be much smaller.r'r/r]r)rnrrrrWrlrfr) r(MLr+RTZyshiftwrr*r*r,_ilog\s"    rc Cs|d7}tt|}||||dk}|dkrd|}|||}|dkrZ|d|9}nt|d| }t||}t|}t|||}||} nd}t|d| } t| |dS)zGiven integers c, e and p with c > 0, p >= 0, compute an integer approximation to 10**p * log10(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.r_r/r'rr#)rlrfrr _log10_digits) rHrr'rIrrrlog_dZlog_10Z log_tenpowerr*r*r,rjs     rjc Cs|d7}tt|}||||dk}|dkrr|||}|dkrR|d|9}nt|d| }t|d|}nd}|rttt|d}||dkrt|t||d|}qd}nd}t||dS)zGiven integers c, e and p with c > 0, compute an integer approximation to 10**p * log(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.r_r/r'rr#)rlrfrrrnr) rHrr'rIrrrr8Z f_log_tenr*r*r,rfs"   rfc@s eZdZdZddZddZdS) _Log10MemoizezClass to compute, store, and allow retrieval of, digits of the constant log(10) = 2.302585.... This constant is needed by Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.cCs d|_dS)NZ/23025850929940456840179914546843642076011014886)r~rr*r*r,rsz_Log10Memoize.__init__cCs|dkrtd|t|jkrd}d||d}tttd||d}|| dd|krbql|d7}q"|ddd |_t|jd|d S) ztGiven an integer p >= 0, return floor(10**p)*log(10). For example, self.getdigits(3) returns 2302. r'zp should be nonnegativer]rr_r#NrSrr/)rrrlr~rfrrrrW)r1r'r8rr~r*r*r, getdigitss  z_Log10Memoize.getdigitsN)r5r6r7r8rrr*r*r*r,rsrc Cst||>|}tdtt|d| }t||}||>}t|dddD]}t|||||}qPt|dddD]"}||d>}t||||}q|||S)zGiven integers x and M, M > 0, such that x/M is small in absolute value, compute an integer approximation to M*exp(x/M). For 0 <= x/M <= 2.4, the absolute error in the result is bounded by 60 (and is usually much smaller).rr]r/r'rr_)r$rWrlrfrr) r(rrrrr+ZMshiftrrr*r*r,_iexps  rc Cs|d7}td|tt|d}||}||}|dkrH|d|}n|d| }t|t|\}}t|d|}tt|d|d||dfS)aCompute an approximation to exp(c*10**e), with p decimal places of precision. Returns integers d, f such that: 10**(p-1) <= d <= 10**p, and (d-1)*10**f < exp(c*10**e) < (d+1)*10**f In other words, d*10**f is an approximation to exp(c*10**e) with p digits of precision, and with an error in d of at most 1. This is almost, but not quite, the same as the error being < 1ulp: when d = 10**(p-1) the error could be up to 10 ulp.r_r'r/rir])rrlrfrrrr) rHrr'r8rrZcshiftZquotr.r*r*r,rV$srVc Csttt||}t||||d}||}|dkrJ||d|}nt||d| }|dkrtt||dk|dkkrd|ddd|} } qd|d| } } n,t||d |d\} } t| d} | d7} | | fS)a5Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that: 10**(p-1) <= c <= 10**p, and (c-1)*10**e < x**y < (c+1)*10**e in other words, c*10**e is an approximation to x**y with p digits of precision, and with an error in c of at most 1. (This is almost, but not quite, the same as the error being < 1ulp: when c == 10**(p-1) we can only guarantee error < 10ulp.) We assume that: x is positive and not equal to 1, and y is nonzero. r/r'r)rlrfrnrfrrV) r)r*r,r-r'ruZlxcrZpcrrXr*r*r,r3Hs r3r#F5(r_rr) r2345678rEcCs0|dkrtdt|}dt|||dS)z@Compute a lower bound for 100*log10(c) for a positive integer c.r'z0The argument to _log10_lb should be nonnegative.r#)rrrfrl)rHZ correctionZstr_cr*r*r,r&rsr&cCsLt|tr|St|tr t|S|r8t|tr8t|S|rHtd|tS)zConvert other to Decimal. Verifies that it's ok to use in an implicit construction. If allow_float is true, allow conversion from float; this is used in the comparison methods (__eq__ and friends). r)rerrWrvrwrxr)rrZ allow_floatr*r*r,r}s    rcCst|tr||fSt|tjrR|jsDt|jtt|j |j |j }|t|j fS|rrt|tj rr|jdkrr|j}t|trt}|rd|jt<n |td|t|fSttfS)zGiven a Decimal instance self and a Python object other, return a pair (s, o) of Decimal instances such that "s op o" is equivalent to "self op other" for any of the 6 comparison operators "op". r'r/rb)rer_numbersZRationalrRr;r<rfrWr= denominatorrQ numeratorZComplexrrrvrr6rrjrwr)r1rrr2r*r*r,rs(    rr"i?Bi)rGrFr5r6rHr>rrr`)rGrFr5r6a # A numeric string consists of: # \s* (?P[-+])? # an optional sign, followed by either... ( (?=\d|\.\d) # ...a number (with at least one digit) (?P\d*) # having a (possibly empty) integer part (\.(?P\d*))? # followed by an optional fractional part (E(?P[-+]?\d+))? # followed by an optional exponent, or... | Inf(inity)? # ...an infinity, or... | (?Ps)? # ...an (optionally signaling) NaN # NaN (?P\d*) # with (possibly empty) diagnostic info. ) # \s* \Z z0*$z50*$z\A (?: (?P.)? (?P[<>=^]) )? (?P[-+ ])? (?P\#)? (?P0)? (?P(?!0)\d+)? (?P,)? (?:\.(?P0|(?!0)\d+))? (?P[eEfFgGn%])? \Z cCst|}|dkrtd||}|d}|d}|ddk |d<|drv|dk rbtd||dk rvtd||p|d|d<|pd |d<|d dkrd |d <t|d pd |d <|ddk rt|d|d<|ddkr|ddks|ddkrd|d<|ddkrfd|d<|dkr&t}|ddk r@td||d|d<|d|d<|d|d<n*|ddkr|d|d<ddg|d<d|d<|S)aParse and validate a format specifier. Turns a standard numeric format specifier into a dict, with the following entries: fill: fill character to pad field to minimum width align: alignment type, either '<', '>', '=' or '^' sign: either '+', '-' or ' ' minimumwidth: nonnegative integer giving minimum width zeropad: boolean, indicating whether to pad with zeros thousands_sep: string to use as thousands separator, or '' grouping: grouping for thousands separators, in format used by localeconv decimal_point: string to use for decimal point precision: nonnegative integer giving precision, or None type: one of the characters 'eEfFgG%', or None NzInvalid format specifier: fillalignzeropadz7Fill character conflicts with '0' in format specifier: z2Alignment conflicts with '0' in format specifier:  >rDrV minimumwidthrSrr'rZgGnr/r:r thousands_sepzJExplicit thousands separator conflicts with 'n' type in format specifier: grouping decimal_pointrUr]r)_parse_format_specifier_regexmatchrr groupdictrW_locale localeconv) format_specrr{Z format_dictrrr*r*r,rsT           rc Cs|d}|d}||t|t|}|d}|dkrF|||}nj|dkr\|||}nT|dkrr|||}n>|dkrt|d}|d |||||d }ntd |S) zGiven an unpadded, non-aligned numeric string 'body' and sign string 'sign', add padding and alignment conforming to the given format specifier dictionary 'spec' (as produced by parse_format_specifier). r rrse#          &   .  ^  0",# %$+  *       P % )