JFIFC   %# , #&')*)-0-(0%()(C   (((((((((((((((((((((((((((((((((((((((((((((((((((" ,.Fh Ch@ 10D``DBB h4 @dX bD iD ІI$TBB'$"`I)Eb`(m9@0hb&!1114  b` Dh "lTH)TAiN  A" hf%n£!aY4hcC"5J2#Tզ@ #(a`QI+JHB8h@!!!hSMNhC4$11SB!`&2Dc(p*`"XE b!IJ&0C41 b `hL0JHLi1L -XX`ݚb% )*Cp& ! $40)!b䜢hC@D 6JJቨ4B!`b `0@ b`&ё^IÆ LO7dX h@)A "I`6H !L'@ DQ B!Bj4  L@ @hb&%$ D LQ~7ҜtZ&pӘ b `&)F؆` 7DBB&qI:LVF2B1 5iL4$ mj4 @ @ b`0b iS` 14V1l˦I7 @` L&ȒB[lC!FlIY +@!"!%$  HX J00CبDE18! L r2ϳ>Tس:=8Ӓb  & !`) "0$EMSIAL6D$B`&BBX&1C CT4h! @@4 0Yf |,tCE\T}nn` b$1AN&$ &IS`0118` 4  9_^8B14yꞿ3wlK 7 &@ 0@ @ `Ȓ b( +$2DR:]Z3cqcAȴNb11@#@18b`!upyt|z8lZ+]}3:zKcwA9SUU5AJ   2LUp*HR+EUEvF2qIW8)-JYDUQ  b `16!B& n$I9y~yntpX"QE,m[&C44 b ``@  BQ0&:Qud J7*"S-5(J7U@`  b1n.2/| ZrJY]3~ڕyצ1Ͳʬ3}[9NΨWVun}Tc~g6g=Mq6}GKsx b``L!nu"6ڬQ}_4 4IMtSҫ(610 b`],k4r:\_GOn骻q[,C*ͳԖzhUݐ9w L01 L& hQm(4d]nNiF wfG&ܱx*uθIbBʤSnܢaFj(@`8箄Ꝿ&IltgxgɻM%Mږ{z)]vSqUټ& b`0CT 8&`% '** -L/(4$cךRjp.h @1b!  0n7ʮB Kt}UF˞tr\7Jϖ~%Ҹ[!hUqp!&7Č1] *O4צN.Ǽt0!J%S101CC&1 Lh b bey ?fW7Ƨ,ʒ2t}֚m[PzvvF@ʀ  hb @%(#!!bBâM4BF=x Pցdd'YS̷ͬ 118h`bSv\>}Ux/ޝ7UI5h,pܞ^[U9=&v8@I!(XjaS,S3]av(KWP4j` -#ݒ7Jն&W"1t!^0 ! &X2y=yomNz.zVwfKݚж26ϗMa5L0C]q$8EQTl;yj]\U:znT62U f%uLb!  o7Q/{jyϣCJgS[oޮOO>_W6O~oC,2T`44\3zc(B A\cuݛU4컗AK2B6vǷ\n9WXQ,y:Bz` `4 @C&r_'RdxyNu <SQUM+#S⎬7v㦩K]Jy:KX5b`!!)*d 1RYn+έӚKUJX7U3˟EA}lŪe6@@  b b4x2\>|z^WvB{3^S׺Np^kέ㜅VզhW6rw{xz=)@h+ !daYZC.~mQniڲ7|0Qgj_J}l;8Po)Ά>4 @dtsNqОgͷ>ǻ \T`ыfNf7(pu9|]͙c{#(h1 @ @}6yn;*SHI*Bj"9̻&{y]4գ7>Wf~םZ0niMRsTH/NL` @ `/9ywVY-tkZJ~sGCz|z[cV-KX+csSTWu6kK2"2QiM b6y֝^]k׍ʻK=U**MVK2R.ZE9}v6{i1m]jZҌRUJ)De%dR*K~eS>-у$eͮsuκh%lGNl8#~:n5Yߎqf?L'@ @ojȲ*d.ܴn3q$ngլNKbS%{ߓ\qM(zOk=R͕zX_~=hE'J]\YA&]ƣLk4>5tdUFm8ʋ+7T+K-%3oU]kRKV=cNjkCiGY)s󝧂뫟CX=na\^ RgOA5F|-P_ew9jWM;暜Q}rUh;p_>|+ng<%̙uӧ>phss.SE67FH[W+8sc<=3Z_FJ^Mz('.Rǖ=<}<=hr7Z6v"pV-:jS٩}vf2UeYN\K JN*|y.!~O{ k#;1rt݃:>8sVL]*gs*-dY*Wdnb b&@?=1Ms*|ZW3VY.+ӋcSZg EWfgvZNDeSBWʋ$ӟLu?CԎvܚ/\hُR]zu3&UWZRvj^l[֢3u[ةZ2=Ox]wԥΛbyu͝p뚫3UsaVX;I>7~xgpa;_կM5yĔ1dD׳<K}*D&P&@18{N]n)E=Mg_811YGE) "J cMQ]e3>_Q=:f]IzTQS US-izΛ$Iv3Q]]JM$[VT *N5-eBHJO<侴euRVzseOv--m(JƬi`jKڹW+n}1Z^.sLyq9}4/sw@ZH!]M&y،l-nq沯Ets'mi9E: Q"Z 5ֽC^mkV[ʝ>]3n2,#\B `T(U6-N,gF~&[bB^w*<=UÎ+mBePW:IPڪ7䫲anm J0 Pg=iQpڎz\~-kRqXl9]O.w}Ku&kSuHS $BRee:̢r fnYmSE9Hr3PQuVE 6AM "vty|yU.Y!nm4kqB.N4UdF鶫,qLں[e ⒅kYknpwBϓU>^Ѳ+214E8,:"=YվٛG\N{UǭJ1؆( -Rd [ۏͣ1f^6%fF$sB̠YUӲs]0 &\Z\_dL)f{!f7}6_w5SYŵUUYe]=73uԌybv#3]ё+fXx?ί'jĪZ'KZCOmVg ٚ5![omjbїxue ؒuU̔g5ziW:7':]Uˎ:ur;ês솅Dq#$BGVQ}cWQd.ŋZ5yrhgg^1ʎxGo|u?=%[V63fH41ӿFBwwnlӯǵ*vp$FJdi::qӏ^|{sF5skb+b;+ɳǽy9mIAJ1ɚz9j]<+htU!lNZ`tafcʍ4⁳G/LJ|TZ5%TͲBLSd-.ط%ؓ5ˡæRdĉV bc@$::v֋oV\fwtr~.V:2.8n.YX͎hk1.Jvտ}ڸm볧-%\s^Lݾ}fƥ<;9 o-^,/B9T,ųXҬ o,4 hxiӛfR-zlFfR&oSG/G=fl"#o %$4W٫#1e;Y(62+W4:lt#:;1[G3YfzseN8dًI8Oy@ԉ``&!#8Hs3_OFRثRulvth;Ì:dl @TqVR* ˣnsuX4%y:f2h]KƣVi%:f'w?LkU?,iÑIg]B%6aUiUg&>zuƧM_5^^Z役:stNg\Y+6ٞEֹgZγV5vkD-d=y55(&: F%`Ȏ-@ 9}l|dNPGDWmp%܍=mbZFlӺ23jqъuپY|| FxiP+$'*싶M+oEșPBf x8O;)3:!319t5!K kϥ:o 鞖3;=QY٣ܘ0JCM`I5f|֭sb)[b6xe8Ne!Bq2c8&(Nv񺭁TmdB6AI"^OOA(D#4o,i󶞼 ^ϯɽEz{κչ  J2# J0lewn~̚!)N(џLbU9:x}qҲ6m~/LmҘ>F蛖޿q]V FbRF|qV]ب5ltO՜&e\u5N\&\تP ʕ^dKN}!F'3ԌIT-!Ќ\%||&zcy].:yٿ,n㨍vL1I"5I4ЇJ+y_4t[Aݦ>f:i2\2eP۱kqED1g۟NxǫOMJ4uH\EūB ]I!["IHl>GW t0peEN]2_g:nm#7S{qR7.ŲAVL,qhJ A$n,iօ7>]0g3MiKkK^#PJ8@LjVD,kU yz̪|NKυI@.v}5wy}~cLIWw!o )E(JT1RjґW{!#4}g(CD%bJ+WKO+ &3doFtr걤Zabb!ͫ7%ѯךU-Ăj*ÿУTҷ=|<=X[q6*iC"(d'"$- yyTnh-|z]fSn'dZ1Ky} />u_3\8 Nz8~GLP;iHvL@`SM"1`8x`q/mAI}E9qOןơ^r2U`JP,cBkW!$I)d+bܩir+уXJ-)~tc>&ĂVB-K_?z$. h0R)F@9"ʑe>\z\;5P:M9u9ɮsaOz{qҬsq6ȦN@gm ;\$8' #R#%M_28ІU[j,#"˟P=++| g!4n^䪶 i5P$ϮYCc`Wr^010#Њr3$H ۀ29# ?ӯ ,q=ی;G0O,, 4A@83s3o !<5-׼ 1?430D$a ;8cO4 ̲9G&o4 1ͫ?8<3w>9? 6 8E Ǡ~ߙs,< ,/1\O8<:Հn:,ӽDb.4'8+Jr<<9]+rˑ0 <8"CP/ < s c?2<O;x7}000 Á(N5M0ϯFo<Q!w0 # L4Ҏ +1`=LѨAuM 8 @h  Ϊg0[8d_o|n00 8 whhtS/-ŸsC8 0 07o8$ڍ"ʘq{ T2ѱa0sFsrљu[ ?Nz2"8fɒ{Oc1+3vzM|"D:I}KYaLω` 0 G+(+f?)ŖR+}0q@{1'7#:w4VO0 $βէFS4LBer JeN*/ =A1=$l\Ӯ@j.檄kz%eqe^PU콹4x=3` X?Rʺn.Z׍x)y"ř?21l6oW5O䐘eނ͠@{B2y^%kZ*ogxBVW`h9mh]zXX,нP,ۍ44&}=fJ4E6~JC 06}+n'Ui1᠗$ClLE՝)[T@Ub̶&R3[gXPB =J(B41|xs}Px蒲@[5"J۲syo#$;X#L z\,;tEfwҸ,=ěeӽ'O (7=u~*"x(Q$I0Nm5ͬz hEb0?%0+l2ͻXl RH#rA/TmXb̪?>޻|P:}f}Sb*QnW4{5\@9I{;MWjMxs1;1dY~>r[WRlW2 UսKzrIv6G'1gglOrm"(zLfo`Tx0fbhmNW= [c3 $'4jy32`$^vԩWW|[|{TFg4CPaڝ {X6]0[Ö4W`'LqϊJ.,3U[1[v Q!!FuZe$ eQw?ieg]TL-N @X-nqBٸGV'd H- 47O3y=Q ,swwF%"wXMhO{5! p:;K(o;1O6`.9I~hŶͱ]Yqưpmaƾk^'y; S!",`8t侑5qGZw)Ayw/<^?Oz1tӪ($S]n91#T2yJφ |R|3sJ(]U+G{a&Pd>i6ClR|2Ռ7Cgخurڛgs.3uo=p,!5bh-?KM)UzUk81ְ` ZIy6 qJN-ե5ymχ7cl,iX .CR oz⯫y/R褻kPp20%˄c`6HapC[q7C(Dz0DG ϴu{m[˯Ac" i;?vGms$יg,h?(sc}^?Z׼s8&IGhDm?Kosy[r)| Cq{د}4} /{ePE4]s։* -?ۉ붻]:+m'Wum}njj(l*J }mKVT~ 5o|YYLPK,"jC*6i<}}mg*ޏ<2cs|㐓bI/v}Hvw gM$YQm<}}}}ڡ, 5`na%mv}]}UhQۼu,0<2}5uSU[-3lMUQ }d[a-9qLԻƥŻIu<<}g}mD#͓[}3qԗq[\^|+ (ŵP }qqe5=߷ (Bt597=#a*8^ȁ 2y`Åqi}<887w]Գ=xQD\}Dr)XI 1ϻ( cK<u6YqJ|4tu<o0[$-| 4&'=M}R&ʨLs.Uij M\_҂B!wh,o3g]o4Q7u ?o.\o(iˣ&CpLTz7ʙqoyv1 ԄajAĕ]ȘYB1/&aжiv1$J]I1ڂ#y ہ+-AiVmmRYY̺}S*_އ #׭qrBv YR̿XB=kqYH8Dvq%=j1 PUjץ0,#>!Tף,8Ns|i,:$BWpہ0NNʼTrJkY?4@K_oYa @1沩(SgaA4Q6HwF!J`7pVhָe"֬jO>$,JdLTf9BV;(L\ h7 6: /[)+R1.?`2UM|r*Mѫ/-?H@l!M*"% d͖<HbģHo몯H^nTG[-9#%9I"9MԾtd%yhGN Z`˿LJܘ1 3Zޥ0ږ[z hfɎ$X览N7a./m ՖG]8_:)]`9xw(F.&n$6NJ?[^F GYdn΄΋9>z nf`~@lֽL&".qj'1q8hWݎ's@;B ;fdBy|q=S$`RD>]F ig ^%"MHt4SIK+fe Tnf/޳tdy%[1!Jdx'@^PMoxMS{TPfB|^*}'sUC-JA!AFx(i؟.C` \nx<졆|nxYPd(n`/fL#2t>#DũE^?кq OmNkoȚ6Y?7*&-BA0QRj`鋘LϡL61O{˗&T܊TΛ7 q5tfԯ09mKxt\6j0"4x/\ҙ UL}%jXƄ QYgк87d]G#aPJHrCN\xKg 3]Jy1`\` Ә![MͅX\ΖABn %̃rd@fL*tf]>]x*G~|ˀ`1|>;;_`GEqIؔ嚜 o3TrUsqǣĭ`FC1No}~`?52%f o5P  B楩I<$̙G.4v|ͬa,U+)7v1yP&_6WcBa1g$љWx5G!TxHRbL>}UȈ26KNV_OAk-eT~0 ""3›O1Pg(>L<^F,hF㘘ټËlauVGW5$Švչ6b.3N?/4Ow!~& <~0"1rvb Qf0U5Ax=Fo3S1z9f|1/&E(q3dq1&F #(Ua<DM@Af.gI똏fnD$;2?05(B A) >0Kp|~ED6EFZFv癩>Pڥ0 ӛf. Tk3mGVc0Qf;,ƥT`B"ߖ7*s iN*3("U FbqBbZ - ma_\X5 3.(drb;R`@58q@T&bfj\|{Tӹ$4AهB9itbĪہ̮D{ud\%jc5Ɍw,Le"m̠\xꙮkC ʔLD鷕x*D1(~?P& f&3Y1[c`J LzARspa\|t(TWJlKT"z 3 +ɨ80&]>Mg;0Ll&Ll61Z { MRSn(-=:fP& 8]!ryI'U,ynX\ n?sB9$̈́ u6`6/Y3Sd%1)w< 54QO8nYSMd&@k&<[DkcQ>&\ [%N:VA g08AyG淟R4qډswD:AOyDm<*\Mg3zA0c"țDɄf. ,jH#U6;U}1M 83y|kcBk889?Lچpd4L\W 2g&SLue~2-2!¦"Ӗ]:)&m;4bA?0k8d?)}AkV,&E(hڅ۸2S5Aq0F"UbYө䉗JF:6ry.6CMw> b&'5M{P|]T}8_3P,X Bc{A(7g9кӅr(55HDRiS~I:M_Ǐ  ZÕZ-k54ZV3Mg2/̹ڢiYԊD͐c]#6чu>Lv"pAFaJh]Q,MFfܢ&)>@CG(X%ߒhF(m.U?i.q.مw2c('kXIcbZkXD&#lGu g\)KlP#B`P[y}sR(UpAn%MW>fqԳM/|5FOm?ٷbx*ٚ-X9BP16ճ0ԲPP^cuyLF*e Ù­ -Ar8ybf&l$>!WQHQ.TIL ,?y"zmճ65Vq|L_"Sgϸ 72Ϸ#5Rܾb{["R>#9&e0Nf|6s5 ]?3:`"Γm@'gfLyybXq #=7VsE2%ĠG,y,n~"T~ _eXt^Q70ٝA7%ÑAf%3Vr(ij7@{_a_}od橶bdgGGɈlw˜' u.fYRh96i[9!>2p@*1&ELf`B~TM3F᱂\N`J AAH |e0sPJ|1>'L1L t nLQ cqsLUIQu4^a )u; о`vNbJP!1&Œ,.Rݳe(Gb}ޠ06mŒ`Q5ܙ#[`hP 6 cu 36`־& :3>SmxuxNMFdԐ9$G 4;++!>L(bdGRG pgʟ)3cܻ ~e3Hdiѷ)"T??ŋU"aENbw .SP@@_&l*1<8arcj/POܰ!48v ˊ|w3PrՄmCju594"~Q:LA[&-ϊc:f#YQ)="T{ajW><>D8[ǃz ExF6IOb"/"e֜965 &x&c̍h ~X9|K`01gm; 0md<Ӏ*3 >%]%Ӷ>4\AC85LY|@(vu{]:d5c::VzjzF]g.1dM3]bQn* "'6Vӯ28 e? Lu3IcaZ|T؉fm5:gyd9Rq:nǗ0:6ZvsB`G˘Lh8Oèf^Jk깠kMԸ~"nCop&. mS̹p{3b\ML;1|op܍l~_~&7<+\4g a+2 k_ߙ[ S7"ĚU@ѬGP&=7]=(!>cdːa,:~\r?i>ij28̵=<vm<)pc `1CهX õ{0t91 _`'cQf(\ehP" #YA>Q>yzS7Jy 1X Bp8s,v|G";_1+ks7#LZpڐ ?81|+fB\OB8<aMf*ȃϻo~5yֻ$ïb91LA1{xU5") E`+byg<\_lZ3aE c`;O0f,KNDd0XHN3tW3 OlHCaoUܒ&"Pه[2 FZW0'KWOt/ A δ 㹇E5L,JJ6DmZcdtRf w'1h_bc|ith\h/{XWfg`r#v=s<\ĻlkRkaٚţO:[鿿ogʡ<|h1TqNau3.,Y`c! Di3qۙaVh~ˆE<4бWf A{g2rL>8ljocMCAMO ';Q|Tv8&h5nqW IUdO\9P6y<fG&OT|8А&-22fp\tl~4zllCq] L9wB tiX\Fܠo~h?y/~AP*~ OãR(q` SfKN gfE]4hɈ6c Bkܮ3p=; DBAg0? =ˁS|Kt2ci4F3gJpee˪*~qwՐۏa4b1}S55 Cs EbE˸Q#4yCv{L^%XЈN6 ǭª&H*qsWv+gFuAƢy)MfhB2@PC '%}k"Lϑ9"z]BUΝ5@9&5';\>%H;u tۄ8V`zo3{@>'_l6dG+f:;A]BM;@D87"u@r2}t[ ¥4ll&>r!\O6&}n0!=`8'pftؾ=k1Yf(|uOrZn4(cuQɞ /L - T؊ۅ<ZEb*~&vߐ%+Fa*YSFM7/n&d5&i\>0@c"h#h n` `8 >=Ȍ(u`RǑ46`4{&R(H``7 abo"`ݻ5,('7j =5f\ '``g1|L˜"Vi[3HbT1g>`|č米?5_r~IjY 2p=kX0L4jLP-!Pr/gQm37}魻N}Ri`C4ŋ6,]R=ӷL#)(eF'%i&0L| 2UOULjliIP|b:}Bd_]vjvSCWe5$Q0>6!1A "0Q2@a#PqBR$%3?l/;?(g=T3iMm#D =>J~¿h,%_\rB>Q_qSMi3*:t(h{TR|aYR[oϧESFZ5`ܿ07a_8")&])5cbzԯF7KGz(JHP(F3X>?T6ʄJJޞJ dͰp&a)x]R~7NɘY18hHRĝL|2~#갢Sn<ً1ѓr]ٴq'>[\LoQ`צeBTf[ٌxmcgr`_ؾ!ݐ660-EQ  Ɂg@SC^&\z'Q8B= a?)?P:U?N@*>4}BrgX:;\N7jМ QK&ZNܯT6a6oa㸍練0d8E+`rVuhhhD3q=x멯oݙQfg<x?ӦÉV2?=`͟H$DXt`?TEeS'5g !{Aw~O2k'%8?6 1bmxls48>Hx55T[|G"0~{L`KPT4oU1c6|OF. >"De? FasQ^ʬrMne@3`d4tDDn8?2VC+VxHLeV748M* qU?M7& r g.Ѵ'o&\̀]` MqF*D,hA14l"\"@&T.f<r.2)&}0i#Qdƃ&nD3L@|@r"&#ɍs Eړ:cHfvd"G*fA\YB@S\X Fngt&,Yr*E!CDf mbiwd49Аc2uPr%&PCLlw\EP?1BSO(7#(☎B V0h@0SQrfn!kv?uw5LT!E "+2%}eAv`@Wc͒30+26Tc>fn<RT(9ֱO+n&W˦?UDZJAdQ`ZBAq0e*`"㈊Ld0X36fR@, #aJ?a 00GQ B% jfe WώE7iF ӏ(2}1:&e3A:%E]DPT A(DF=YTUm%d EPy<@ k mF^ft *Gs\DmšmAK列N2?gI8.0#%0 Fb. .f(FqV&P:vhtCwb-& ˇ#Lώ&#E!Rp'Og( xXX%,[V`Y LX!65mG],|Y*> i )4wdDs\f44M5Al|J8 f 3ןfyeSl"3]1X̸O+s"saWqR)yTccLCP, ;qh 4}y!IɴEv{9T2EXٚlG&@&W,j 3ǽ@j&zG&bLTno'cƘ<OLx=?(ؙȵʴRZ/R<֝Mq, nTյ$Yk] e`.u'V-w!h cOc4Y61&Rǁ1)4bG ,Cs 3'B@+1bg[Q4‰'˽&, o'"T5=`UvOj?BrC 8C XP ɤ:kȌMԻ1&ogG[@@aQp34_B QP_ hVbb C:c-h.!A ω 81J[ل'&)(ۣ,'X)\A 8D=Bo]7[{1QCP3&#Ez/gܻc~]q`QRf,eT ͤL=5#MC:.1\PT-8w Gan|c"%Y0LMٛ&L rsSd8u+W/Rè@E\\٦զ}1zQ,b~;"k6)F:YWc2TLnjb6ۓ9.><~1,NEn '74o_(*lD+u wӜٕDƼ@G3(e&lQзd@l. ȪjÓlUٔHn!:l"fL9v5hIu ǍL-o7:7EK.crmը௙ u3c]XGȘS2}#XZ?dO)f!ɐAbfG8T3OfpiNrfX)4cN2"F4!ʕL֠]ZŇLɷ%~e3܄E؈a/D>zzc=5V>L[i'b 'C>R#I( eR@9修euaFt`ŊSN]#bqk 3 j75lU*n}jOMWfUT0nf"!%zːc&gڥJ*i؜BV n|@7:0}bf\7M@9@gPМ`i 4j&p1m5?Qfk!ְcd luR>L'м̄&*}?툊怇J 0MfM) NՎs;)rlT=" (?9ɅZul@;%R&}: ^yVԛ# g-@@PRLg94^C>`&\.G7gйUL1 *: QDsAjqDl2-4u7Eox`܌c˼/*'fd*9㱆 D ;da:K2gbeh4{FҡgL |v3 }P ?tz`Ț&&o"{preLB$5fl L6وAn &3za)ϑŴ(ϩɄMQ\ޣ 3>=v~n ԐVPTWLĹnt̛3W=ØuqyYؿp}:O?g'ŷY(vf ,gQ9AL^?1!+n$֢&*`հ3$Ծ &5)\\@:&0E!iS3y7/URA<~"1e0YFNioIB;?Lpl=1V1w0`Nd`$C#O-ϙp!vkZ˹.fn|NɁOBdԽ(݇_-l3i0FԢ7+fLe9*D h;Ob`F1<"ڑح(E`Owֻc(VUlY{slc5UGESowѹ oy0Q{v剷 lsI6 FƖ8cimJIΓ 7TQsQ9F $h1"U/]Ps2+7s73YO|U|ΠS vcB=Tǘ>aۧjN3(côRƣ){Z;_@\P#؜gK=2͸1-qs:"1+*~`Ρ r"6b&mη$j 6>aTPŚ#1`R FD֔My$fI`ʻC3. >aӱ*1%g'i1lJfxjPðvېnk_%8 Q)RY4SLoɧ>lhđ&*&"ϑWj 8f_Xv3#B:;116&@caS0?`1sR37-b!q7Fa+4cE;S&Z3t;rq34)jQAJ!}c]@>`E3w]ҳ/8pÌe\I›, "1!cjTfb[if_i~ߨ4=ndY(L5cGQ ̣!5l=S2w,π-Fk6&wľ͆,UCJgP9cswbPݍ&ǰq0o*`C ȕ cF+/@B˩5fU #62‰(h۩2b`m4xm1V/lZo}VjiT/n 05w2Ʃ7b`<> 5٠%z"wv.n,LYWjfJ3wBm(w@\D|)d=Yqs?=f} s}&W4&Ĵ Cj}34s\m 0 &, &Lm3 % LTʶ.<x>FTLP"u-8 x (@QJy̨ʂT7?1}?n (6u^#>eh@Nnf*I<)aaԛ{}֊c]f{ UGT;,ͦʠyӌr1#nZE标80a+`DT\˘O(ٔa7`N[#6H#[YIU>'͙(M:.e/ONfRk޿> aٿ`G?~!^a£SP)cPD"l& 6ȇ)1t&zn|0dAc#'Calumb 4 ֩L=fݸ2oy.2I$\@=%?.$γc.U' &6yhc4~DžYz<fc@X~è81]K n DRk Ž &QbƣP pэZ:ljX3ʕ?ݎѲ(G` (z(PԅB~`kS6xM,bmwQ_ 6rMp{CdСG՝K cmؓG'ӲTnTM4k#Q{1O\GeN(QbsDO{h:Kihc'\?3(PBgmA)g 9aTq%#8N0m^T\cXQ%…^(/au9羳:o=3 =n-~Q~މs>0f' dΟ?n:cW=vKCiREd]|E9=(faݹ[9d* 8۳ݣeJ0}BKtLdIPGcGTıa+6M/" e'af[:^ 03~z?7*TqG Px{e`Q+yh'*94omJ(1W/Ɠ^+LJӓNJy-_$^kS h&fn!fusB'j9pV!8 0(蹦*9U4Xgc{ZUVӧw=Wf8TXңe\we7D ;>@SZ;VjgqHjP9 z#"bȯpcv)(et+w4gQ ,{ Ži$5EX:m/\ntXG\Frv~,Ԩp5! cL%O*Lx yŦqdGh 7cnSz L mgZl0G\dSݼ.UiVm FVcNH9dעlUe^,.I&Q&] mѝL/賀A5aS4s|CQqpoIH;|e_ -!Rb}/2tu #r@Uy6Tܻ0Phu]Ļٹ_@lrLдt#T1OS76~uwliΧ[L}LLiM9!7_O? IuZuNv,/!P25䷴CrwhcVI *U5ϢDiYLtaUvp}:'{?]fmst' LzMVrMMʮ0uFS naW7Ԃe Fk;B>Ƕ5D7w2&dK~ُƂڴ,;2Z{CX S5Mh?-$JfID£&x,-q#DQO2tj@GI @!Sv.2JvY*d &V`~#=27Z,TrdBCdFW K Tz;x5qTæʙ`;*kHQ&\JyݳKBt fL :|zt^c;`3 +ɀ-V;t)>au?7Xw`GRwAWHSnNeII*pU)ai0i8i9ͧPѥfcXUV6zy4Hg]NJ<-=֪xbS3fYOC. Py֩+kYZylg 9j:D3d\އoipwa6@nbq#\A}#R5Bl p2U]& %QΓ~3TLG]BbIU MӒcl*T&t9c=eC'~:;6x5@M4 [BnդM0I>򫅨VOt525j=wS1 0b L{mkEUm O *c T̸AiD? N;Ӛ`s^ǀ檓N|sPL:6HI?Eޙ'sf2M}'TjhhwL)? 煨 J Nu'䎉 ԅB4NU|)Tm<8B0k{2`i &KCe~Mޚx!%OA!Wk|!;T$S%L;kiTxG ײ4AL&ТJ.#4hmGhZ$4LtUeˡK*r{:s^D\TwPnQ[t\5ee=UG7˞je0GC,T8|P}(lsjhvwdOWgUtr;\DM)eEOHM >Rxs|BM:M}6aFbD eQ1[߽?P 9ke6N|hyD:9jpj6?ڎ-Kz*sDKay %^цAoyK)4nj]ˮ78uXjz5"汲!QQI=75iͳu}Ձ;V*}!TKC8nys]0etPmaS`CT*Tvb:ױ9*g<L0ʧU|!&eaL'϶DM$g53ZLk)#-S'wDcwE{0G;Ii#6?CrnC +Ϟp$puC=2oY4t 4FC9/Q:~'ET\t?T󯺰u8{C3B+'^XdamZZM<:}imް׎D+rKanUi*e"ςZs2潤CsS]sNRζqFHh4asۍaxJG9 ̕"ks7u)ѽLOE>>.suU?&hTUy}T!@& ?%̣| K]yoU#p#ZUDdNl9!R hNNg0[[o&O@p/ݯC3ȦRf+9إM)džA:J7@ˌqOK y]^3cNDѠqkXX~Z*AW,&קk*qglamFtqJ-'B|m>hwk!6!S)yBcW NmUZUIˈ.Ϫj܌~vFG$Ba;fVm:k x]^GN 1t /Tۓ@h+¼rW2gOݗ.Jxl"y%MzE1[uy,s-p,MTo8xʯ k $1Y:ȉ&̨;ÃVߧi dˠ "9BOȧ訸; i]c-{p ԉZ°1gif2nv2ZCW5[Pup|i ԜRʨX}I4w@Mny'K):\全9O%KxA Fn_٪*&i {%.*È*m &gR$Le" .$8OTT\*H:~F_ 5BF1ͱNrk Und*.|sޓ=Ld*6x2 v@)I/S5=%_ACFTثZ.xÒכxfd']%J܈#Ul4:({.|uꦵ'j{a~0r9#U4!apAd@ȣ190&hM_Ē)UUmsM%d 3o8ɵ=k:T*qLwu]h]chʓK9:_ө41{y.n|-@Wgl(:\D4cm:d Ow<_T8biS{d.ڃ(!UߴUMo7LԨ}mp:O: ^5*|MSK~`zSm\T ]& Mq+HTK YQR`s3΋ "'NߚܷunKv2/o㖍`vl&iA:VmE,9zg`̞>G^IwyTШzOM%4&@*O4; ˾*=}Bk?BaoA6 Csns M`Yy,"=S3{qn*'ڵrrՊ||LUHnJC) ve1/-ѣ@U[Uȵb*omx`n.Ӵ>*SLUZ *Ea6L\UR\w{g6Dhk[g)LdeW02BV5U6U,— cG `LOU8}~ K op|4q9(\~_=m7CdxH9eMl*ᕉ1Թa2D(܏TaBTUՄf EPC ?Obu'5Hk8G$y*cCrՅrM9Nyk>GTXdnoh4Xj;]9#YM­2ڲ3*joEARzeh@rküOWwZoU^69)'Xی;kߒcN ]< s'{lp Vi3R[ T`LE^ GS: P L}} (႘Ӫ}AlwEZzev#޳)Ȯq}C{bSֻ;IT}6s]:y)\ֻ{`L;%{zFKO}Uv-oHhQ2һK Y~LeڻPrDMwbby'rcTL$Z\2ǸT+*8Qt8]R)cAsdxDz6CDagXܩvk̦uQsdPqa|2ۏ`V w u6Fzho]m&wtX|>!<]Q1Z\ӡ݀ aȄ[qasUM>XrN ~LJ 0H}&ɨj=ʿı ^_> us{39+Z~%iv#03uO_תUeq| f}eR:,E ۗ.{`U\@ dgM04c6cj R3Xl@{n5X1-fࠉïNg~~wsDR:(rJ"\yŻ_o=ʼnZ*ѻ.4a*1uaouُ$I,)c[F@^ TGR&Mbnc\wMw*vVS6yL8džjvU ԅ@Mvy{D3=rYSkC@V@3QbP!q|Vڎ#Pf2{F2}!pT{M7T{F\L_0[5ZtTgi]97Y.ըfJf,s'D:6Yt}U4q-4cB>+ cmƲpvmh:ZGf32'k#o<'' _Bcd'CM#fp5k,;OV=G3Muj\eԕA-e1 ʬ4l9l)hÏUITk- y޻PŹ}ڸ50yQ'U2O@!T<SF6/H z7?XN3 BS)0-9s!SiTUw.HҚL~)\eT{Fly*.,Qp:gy. h-O`]}1ZPkP t:rXϧ^⏉8CM2c-&,y9MvXމCp8fmJuY,tHS]k:&x`!ۊ`r)lKS».R~~J9iuuވK{лO]W ?"Nh(uBJm췍܀sToKM.Cyho6{`CCvYpv9be0U??D *X~ӡ_4T'"ԤX㪥JjtđIu)w犏aT @{6X|Ml.rGf!V3+UȔ %Z|Ujze0ֹ^1OT>0 %2HX'vN+Ҝ!7'hp8+v.,R=Qѻjxѧ'dMH?HnX\=3AuĻ>^G_m 8\K@XAAk" +YsUt5vi?cLhI_5 <)JC /Ak\6,0;&)s h&q9SKU@^5_,ͱ$&nȷOݷڧ 7u^G89y m _,Rg/pjǘҫu0\?J]#\w"b=G%γX7l8a-[QU}r=B$h MUJLƦGS3@*\"B4E /VnͩNw,**Z[V.p9gpXgյ̧kc)ou7Bh 5U@FJ&,~t7)%37 S@sns)YMtn w4'xisWXa>o%kV}G'TU0vg J~lp*D$&vgkTwU%Yi^!b\xF+' ! 3\:G5iDWhGO*iЫwMwD|qvc*5C-aDjp^k V5 (7kKi7ywYoTʨ,B9rriL]60QR *`mVaY.e1R뾩Yn5c/k{xuﵤhCFjپ冤Vh zPab4^eRbgB 4]+_񓪜SC9[QG:Q`Y+Qw̬ v@ R,^,. 짖W _yDu๲-b>.$ )'}^'. {jWR9hb(6IVh ӬxI6Z1U Nm.ޣ4E@f>Ues-)*3 u=UJna 8:~K M-ܰm̧wd+I*imw Ri&Uh>VysnԳ>"2yNv%Pb:T.a5T=\S({*G^EhZ>G5هع өrU 4XC_Ul8 o5 Vو|uDasuDO%-0n5XgUpK+#2UiR6N 3G uBײa5u9gIN+*7O$H0Tn{qla_4O@RÅkXItEGqpyjihOͭ'>IUQu6,vg)Qc~ùh=Ή*}Wq ~ձ|UEYTqW.-y&Sxl_%in&v_y{oTG#%xy,E==ځ}C -oRHxuk L%昦A(qf|N7%Li-+ j#柕O4a_n!'(o9wK{ UOV絽:wbsAbUq5˟$r uL '*75n MB- /u:܈Xj&QNMyNH0TOUJ U0u[$o__ 9hqftY'J8; ?A2F2\dYtWh^ke*ƅp^j +|+Z>DmH B]Ty,#<=s ֛MٔZHsPF\8TiK˹NӅ:h(H\Jc&tJ}jnlo}CI!::<5\wBQK"3Qp51:eZ=Ät*# [)ܺ֙Jߴ?6hӒTkZ*zu|8GSktN|62f'3FOڵҝSH0ZKnj=ڰr֕!U|`1è?-ph >Jr: ~M`ۼwC%(Nn{ h ht]\0tL|~Knhø.q7D G  jANt#EO.`89跜1isCUkATiSkq#O^L@y2E x',(3 JpM9,Q蟲aC1L dWg{x|;vbkd杈uVaT׫knK ˭h,q&VEPf3RygbP2rjS]G>I"AG&$.ϧ$Yk/r{s4ւO c&5 h[(u!7x*5&89?>wu$2CR5F_[>u*=QΥiH=f.4l@-}#54@ ΉO0 l2?ҝ#0iO̩>. L ~X[`L_iAAx[XbuY8GЪT&gp9X٦:&yh 5%pRG%8&jS&LTXvjyn`{<5x4Â\9kچ4Laa^֜X.M4íf%;`G2~s ƛ;aRWm7 y"b0,hSmggԬ\>X:~kVGftRGyoᕼc|װezER4GUFPě.WX he< Z>NO85L5Uꖵx9amٻE$9 PH7~JmLtJӣZUS*FEauV.9+hȧze&73#^yg 4ˮh"7k {af ?ȉ[tZ<-XTʹ q,YXurr=L#iӺj~fL--jkRDwGkRѧUFe+w/E+ O_ XXQ|韆Dh Uw S=2 X[IRL1a.V"lxXZFWQZ] Ht9:uGV5U1oJ0Ktb:2~v:ջ6;Իv4O5 pfts\78S)fD+y놚A' (դ$2YC*9Tu*bXG \/<P hWejgiemmf<5@u 2Uud4i# dm;03 y/SA@L1-Uh0sGDse:CYV͵̭p;Rqꁹ->#Ś)wn(X!^UfL.ȧxx*7Cx,%?*|T Ҥ zͻFJM5?򫦣ˀp>{aЅyzMZbmn4 QʂZV; pKNTr@*bJgFDd7Soxuf>eb 9`\ZM;; 1.NCCs>KXiLW=G1g-q Ku[<|a'U9fF){DU*ݝg+HeJdazDiZu1P /GCD=ե{G%"oCJm*!B."J D>J"ᜅO8ےy͟{@~C R\rS=!0ѧK#yT!(tE"hF$y J.*X\1{ySjATZAy*7,I-p/ ȱkH^U 0<5?6g.7,'{]?!°檃!c/uLko#]"3թSi{8F)u6{QRrjh^e`mQ.k nBZ.Сu wcoVm4+ԫj}793 wz|,;3!'a\4+}X OC:V: v&ʐܚj2$ƫ 75Nmi"K}eLC |fD?LZ DHQ-YLA t2tj81br`yp٢d*9pNLɎmAeUUmFSk9D,Vm+vMN +߽hsC~jMu f^7%xSkO|K`&[%G 25 pH*:xOUP 2ElЎרּ`AzAne%By&O2N~JfsЧ*urJk*}"O>ES9,8;zhUs-$Z*\ ᒢw"3Nmi.D[*jUBրT8wM#Q‹]}HzK]rWf^v4:j[}\5ge7M; ʁN\f2|YaZLĪJ5y$E9 a);҅[kKwFs|tXO>"%od.wXi TV+Y= YI瓳w*.اR=5V u DHIMl&G޽s3~S XpZ,N3.+NCϢ6)TkUCK/y[~ɞhb*Y!֓:}\;OTЈUܟe?Hȷ3AS0 OHd8c^e/+zK]N*0}BDDfh ҷ7u0Ч!5i9gT}hUˋTeg)T?#x,h$xD4MHj]hBT M~ z7Jm':[96K ;o-Ӝa-)BfM'5W(;iWR4*Zs\YեUeGR9*g!y5DqNx}{MZS{IM7G$Ԟ8Vlߛ5V#JSPĿLp22X?mLx7fsM&%vJMߝVq3&"u+i<\$'^cg-@緸<x[:5 i>iЧa̔Ǵ) ei.:+U:cȦ֋DѪh>iL}8N}\ BVΑ$!s44^hwW>:xpY[gPp:*ױ||y[we4d4ٜ±sM9@Jz$cPee>nMSԂn\Lڊ/S57ky-s ADn 57}`.7-J^x)eArW,۫mVHUi,EKDTWf;ܘ@b< @ve`m';Xu:02޷{[PTe@$$4[jqGhy'g@QRx,> O&BgdӦ$U,)؆9 f(*f?־\ڔTMʡZ|0V0]:A5 ǻNjnaSΙi'h26Vo5I3dpH' 쎬*K^ZǫM!6e 2FɏU(Xch'-e`0SшżDesFt \52䫋*} >)o\Wm)0ŷyD41akUK'MVّs'!S\tE[F\&b2Lg iJ{p橐Y颖FSFDt 0N!>yPi) j0P (TELW%  OB{u<0oJ״Nf+#%a⒨Pm4¹M0aC۟А_wUUgaw, 4wE q g$BV;eӪҗi晢J*)t'876x`8uL1˄B$nOC^ Ѱ` ^5.)o/erlRۏtn3oBegTc̷{1ZdWg*WԈ FTo?!Ҭ]0px*,j2SCT+E0%9‡bwaSӼCrsm0sG<UҘB9ܴ6ho!&!UC/e[=*UamVEa`p۷zEIM֞+TtpX8yLaJQr]\OT0 peCDw-k{߂Ԇ* fn0حŶePi{h9L&؀ByVSlpJq98[19*!Uwӵf,R mv3 AY -%i)UTCa4dcc{ydZ8\UnU>O9?v7k!kw]!aiT{ƖP[K|]TYXxzsLT2=.e=Z\;v9 Oc]rW^ ΩR;PLIsX^*-k2Ui1%R@˪uWI]PڦRH'1>OӚCȏ /rQq,cSjwIғbpQ$[O9se; ӣ[ao^hP%Fj'?%/|*FnwWt=>LZ(妨TyVLNl>.ᕏ;CMZTAkcf]QQn傘3 ohdKO|rXJ]Iܴ 8Z+\Vl/a, ³bIWɐ\3GhEmrU|DuԢiRBmUtmrjԫW1H](˻q.s_{ɓ0u4Tj?OfA:a&_&\<=Pi0{5*Lx^4oq: xUuwM@I\Fқ1iz%Ps olUsbӏSM9AT/ʂq%RDStt鳆 ]} }ZdIaM"JaW`gtF3$Ð9x+̆Ɠ@ˉJp,6Qu>]Sh#Lp  UTS#7yP&zǗX9.VsG4LTmHnAE0HP̭knp6p*w901qE5Bvlvj3Q2\z8L!'9+F߳ly'CQwݪ'޺X;iOS\l v-Yn!uXhiϚb|d%bu'2x&ccyJ-aOjwU ;)9BJ*fLseP4fn/U-dG ƈlysR_=*¹5o$8jT#^J{x5CڲJ *MDD:SD+Sp W{U3s'䯜<x!59[7ИCEVRᓪ[ӢX3> 9o)/]/" M`qچqopS\hQwo,Ȫnm~JSdnNtHY57_|Sʬ{rΪH1$+ʛYCFaSi/rMw77NeuFF\uR 1QO-9!9ʧLn'5S: uTE&G&T%ZR9yu'HPiקCZC ȂE;6-_s-ks `Q)6!KZ\yM8-b 4fߺw,Zv؍&Gka WFBteb[Ҍ@sXb7`~(" qqOڌ{@sWw=[k XSsia^O-7:}REĽ%֋bMXGT N\wqf_lh ~zdW 35cNH^- m~^J%Li U*=h*99 dNי m'4 =^ . gU,})H-2=\qvQBiܲ-TNSk槌5jA`v] ƔSl\nƗD Dp˞cU:&Gsfc0ċ[2+[ leUstO0+Mw,M9җOY~Ik,|k UAg*ė.W,M  ]jaҜrȭNU= W$2FP8H,8L;J" M~92~RhoO"2P a0Y!b ơӉt*FNe[48Sʁ#00!„uN!B%JjNS` fm<[L X]u6=murq ) HCŒuV?wݴz*2tM*Tis=ѥ1HSܖDo(yOsH*o1O(CLӜ-v{ˍ̢skU:z+`G$O g/?Z5Maf^0o v̑™d1Ls I|,[%ZrWDJ*خ.>ISME6sT%V͍ UIU5c龠]nssa eisne9w'D 璥y!N;NkF\]uE"lY%1!;@Fn赘9jNV$"5:c)d+FY&gT~#%Vg+[ {<ˉ4JB6ۡe0 #67'i"sa$oz-vy8ndYRyT4 ?ֹ/oSV>U8e &2s޷-p,NAnV ՍCy2skþisx ϼSZ2o S\`<t9"I俁Nvd֟MJFن>*R Sj Zŧz@]Y^wPYZO9ALr~MYsT(Ѷe5. X~*8+-CSih]#H,*=֪n-R4PsGBTE=i'(Md2Sv:mҟ{@DCT`ys*d3*38JwB9'l/v* WpƥS~jwCvVzQEPlrofyFI5<&Qu٫S\Ot#j"'gJZfUzuTkK}+_^ jnq7wS:bGIW&O%yuBC( ؎!U(L vRӞQSgRK%We4ܮlQ'V3r` M,SN5`^ MpR'`*TJ\RXzTMVΪ-<{ȈJim뾉棄{f曊#\kǂJ%BoEwR匩;Uk|r@iV ''Z-'#0eIg;U'dNÇ!hPUFj])Nb&TOlL> V]᧽,8mVĹT8+XִHh:'2m uAµRT*WRz&419tKP8dUVXF7yhGvy/]R(aB eU"ntLl:k}a4Ʃ97~ =IWtF\NM+To$é7@T$ocZ eW]Nn5淘iXBo&HE{JJEك\i,>6uH) ND&} r^S_&*Gk訷wE,gz 7xEu "M*Y OIr*`yU5r^TAQP*+Xp 몴oBuѣOMU570莫z,嘒\5 _CA8g$3PcJ!90V"s`}|2M[f p9YUpYF\Z/ԫ{9J;UYCZ9v7gOk9ͤ*oI̪o:j}1u^L]MډT=}ٜh~r͒ʬUJu@2{MIw sn*,IW0vxO+HtUM:cD2s䍆hr4ө5\"~ix鰦SW!9R)ٷg&)T{LL*$#;lz|Ka{KQ{Y=Rxie}Bc n2X иsrVku1~j)\w! 8rꯦ3sHTa>IvF״r5wODi <&4 S[̑MBtԩb+:QȕBduqU ^o//lt+zL;,ް=NY"%E)FHx&rN 2U M-m2fJLBf LtswŎ ijUo;MÒ0zQĨ;;D^rr_(duty-}Ӓjb~ٽZfa uE2=9F>J/en|?p$Z69;ܿ5%O}Jgx9qpRz]a>jCi>ͪKG;+°&ꆫZQ@dUVdi)Akp{ ENо.l`)W) %hMb~ xvU٧~k E$^NlIth1NkɸTs6RՍD4*nžpN&DHPEc*7xE1D(vFS*Ԩ[żAAJO)>2d?OOvz6~jj2Y rw\RG{!ba-=OagQy"XSs#+v?6rN ouT5c4V7*'s)ﵤԞM9s0uIR$~0LFY}U;iGXU:#2:"DTd*dR{8\Ce \Z b~yަ~mGxћ] ufb}nG%@ BNNl#]5S+D禊Ri><>f\^zrMhh:(VR$ǂ'6jaVUDGUwltU;E7x-6E4Vtk#6SHjR.DgR}:&Ϣ;Ng%15n7\(maiញԞM@t7{ \;C^HB2kS97 fBe+5G2WխRi.{Qh=G0 ,‘vAN$:W35W7U#z쪔Lw__:d*] O%~Sp5^[bhlQs2/)z;5iBq.Ъ}Xݐ7؆7VT, Io8}GnTZ> hXpXv统2TF4hiS{-tX|S4ƆC%jЂ湠>J@@X;6 _4>US6YFY咎0Sja$O##$ /4W4\Nj)r@N e8l+Mkipo~d'5{ajw^9m&M♘3bknYN/x,FWv޺WeaSRc0%7uXLs[L%f|4!n)wFeTQֶe'G u(ӧ<ƪu3LjKIbZp 0oi>ebnT(!4 U*m8 K2Dv%:Xz6.rprn'z.h-JɍXی9> LZ%awj# m26l'DFK٢Uz4m> Ana ھ|+轌&g.i'[ ^Is# LjeW3B&Ys'ՍO N i-2GEA tR⃏vSpd+<G=CSi6*r]6V|%Xs)-M7`l] a&e;CkOC#AYiXk 89љ j NB;=.yTR,7{\rv(U#019?-$NS0=ػ{f::AkI 0|D61.:}3rM|D˺ǒrBU|"}DڜUZ+u3+w=C -Dvnlޙ*e$4ݪ4(lg,NY >8y.-mrjpvbvJC$*gCaC(Or2`Ach&.U{xf6X;a,Bu?X7$O8Uq>ʙ u`Ԯs .7. $stnvpgM<􅀾7{+}]֗d2uh_Vv%E&Lu32lXaMsT7o{IwlߖʂXSgx0Ϻ83PܜUkR~G J\iʣ"|s>AT3=>JȊtۉ [FϚ̔GM}(rA \sC]-eaj8Sk^-QB%5 fsu%]"NjRITxl9,}FcWg׃roŰ_.iuNU{&-N?못OF3F&i4UټMdHtU sȬ%}rjmQ%B*(PBjjZVHżOD:W8s{Wd2EUnL)%6Ub,Y==9'ɐtld\!P֖˓qL!hAdN nmV2= ִ 3 Vnג Dq#T{aꂵ BÚ3eSWxM祖תv 3d-B. Xa;CmXSaUa*yM I=Zݮns|FjDfs@?UfYP^mSLU;mpӲ %5?Ui!a9Z׺ R֑~G)X"ThwsR=Ld7K@]a:g%b(U^915 A'xm$|kZ^i } sN{r懚U reZd4 tZl(hOU0O"4Ҫwµ̔@s|Tҏ{: koV!3r&ZnU}Wd}u.qz#Q !4!s@~~UЧv}Ou#;_"֛ޑ桽Uܙ|kN¯sT #Ԉ]J%=vTe S&9f,Pky1Z r6$?6)%Fi=Rw& L1؆C'4.h0>h_dSB&sxjNܼhahC[5T\Cs|M'-|wfL/7UPjI?W4*HwQĵǝ:UZoHt41 } wB%ak4`v T4f9ʕa9}wBZ2V:$5EbL>tO>˧jkʕAQw?%<_3"LB=#Ȧ,{f]$;kxО\:Cs#=`?]NkHeyhi҃2VB r\i<7FIĺteZhRXU.ͱ)aMa=&ӱ^շ=ӏZJqZWx&TU4DTЪjMKWiWsD(ŚIUAȝ=L..cs/Ɨ݀g'e&:>9oX4.n;pcSt-DHF[7 VW\Z4^X& m h@JWS(_4{6%bnCÚzrXVRa{X*"X=1 d^2(ves̯֗&}j=א⪁.>U80IgHT]}6A٠Z e;ӕZE:O8TϮ;FliCϼZgW mrźOS-ہn碝]TyܧLWqƆ3h>j/ 'bg,=[LǠޛBz)D<5G0}j̀B{H>\JjQUhTTi~ .mQ]u<7;Oo3)w\-FJ g`ZoD)x)9#s.i$w^a9X߆oHj6v\:Ueg7LFp/n\6g}jRCi#ԕ x,3s(ViNf*Ҡ*E혒R%FkLֹn nR):]ҪDCQM-yJ!qCp#CITm[!ScZchvjv75O;WeN|әMIn'{jpdHdQ.YAavlz Wn:'8#>ΛUJ֍tySCfnW6T#)we@(-i@V_ ?6P7 | ķyftx {FJv,sbp? #.5 R/5%4Gf8wBKxMzmNצT.oߪkq M8OZ_)~OK?/~[R⭯_U?]OS<U[E7˹t*r }\= xk+Ѷd VNhZNIxfۂk- sc< jՇKG4h:Tzʺ]tD>aO5lMk/!T3ƎMD0uw5ID*uYXCr(3iSwy9pQ_JNFEnb&2u]>jKFlgihEcYלx.h=Pc]*uNWJH+{L9/9*X~j`溵7̥N:vs)4O3_ُ5]ի'+O%rQLsWeL9'"B| 4 jA @6y*[ʏ n+qWe)c\k9gaSAѸj` <̗@3UO<; N qDCG4uz5/ShQPTSOQL`J>HY:\VEd tVΪ DL(CvMkG=Sapzc C mV6&zKsMt8N})i§!P:sDv^V'kwZgMT}'3HJ7QnP" zJTY2O%Ul @ ,c:mZT fB##`ZuPŴQt0BR:Xw @,fQć8>< f"Y49&fgeU~5^]:e`7':u,S\Y[1ⷕ(5j? |G#.|gzefx8ukB?i|X:#A([:FY;1 j-ϒ,{-O'-P3£e'Q06-ZG%IkTꝘ[[S[w3fٵ)B jhh@#cJM*T䝢MJi~i |3& תcZ4().ˬ*iS>P4ʡ2<¤׹+| .m@AM2ܑ;2Pa -Lw.+0!krK[iڴd}L vТgEKMU vasyƂ:ibiu\C1qUjƊW8{IO ݖQµ=:/@:Eu'f#U DʬᄤrzØ_uW[!zUPQ2m%vχ[cZτB2[ݟig4l[MZ [Fgލ ˸Jϓ^#{?U$1RŗU+L E%4{QŞuV=h{E5 EBSD>aǪ:.ĶTve4vB湁j4RUèR:UxWh>^4k @<9JFD#/0 rThv@)Z<iDɘPB2nav=3z_U|0U.l6Mit}5yoT;2?D;63{;ٍX:Peʥ0Z֋O*0>;]Й__CtE>s`\@N*q2F6hJK ^\ײ59(kNcz*"sr~ Ɩ "Tq[>}"|!n? ^Z]2|jW^+FJ(^ժߺj|@~[Y nqG^_ .+?g:Q؃zwRvD3qP~mLj+UDi4ieg:ފ"ȡ =QԔ@lm0S"v#Ѩ]Tc G*g'?S5s,4 C pOuMaΌ;\c]6MNwBJզXNuЅu,{90@>6㩕O Q[aT ->K?(#jM+z}nޡNm-<|dJ)^2\uL'*:Ҏ)ky(wTtxX_ItOJ8*cʂu+N-{rPA6i $CBn`p2U,F\\^2sAŎu>aqշ8wxTj ԘVsYEvM[t(EQ71Qy-E^S02Oe}ۺ5k=l%3ۢk5脑Fa= qtQ&;HC~%wGl>Hf5*3n~'r#[S#p02ۊl{@'(!f:#gʔwBO0SXV[fRZ%> L;NSfZW~ZJq4pqO5Zl+ Zk:m#qʻJ9BsI1FX snXogU!JvA(ӞIB+w6=T:XG=y\; R(s1f<=2@Ts](/P 6l;P5rR,LYV״ N4[4tN:X29UUN.}E,7>V1f%We,óy^:'CD a9>IτriK HFYl-uԴǩ 6J' Mͣc!=[̑Aˎy,vy#vR$Ss^L(ex{>6TSo)nYڭvu <[ .K~uG[y4%Ti܋2VG S堟 MG{sx;Y+kD OԢ2)ۄxڏQ.UZg,1('8eVX`KNzme[gS3MWyPUKtWgϥJ~ 17T^`d 'xRbI(=:nrpmo/Wdjk 7ef՝S]|DmV4R O4V)T/K9B5hѩikgO5%Nxy]Xcc*K4E܁i"-/$7lȢ@Q(#]|zq,daQ]Zg&ʻƏNXmPzT Q\HBm>(*7_, niGTiyx#De@MdO܁sO"@UO n#YAVoS^oǺy=dmi=q;SLWhewO|dn7mi*$ !5vJ^OiVh> lfuLIkD\xZ#6Hٸiin B^:L8OĆtFѭMq23T+==Jcԩ[ﻗU|p^J޿L/ɡ2{xA{gf@EG0\>9a˪K:Y#FӔs+-kE>\â8rz#D̦Sr\6́Xwq H-czϨTi>Jn\*j%sTܱ}E>J!Jķgc4Rö=IOe\JOY *?YXe?Sm ŸQ#O8o uHBwOG;=p SE6ZV'Z7ڿ̫r[*frD5+:ֹ*6l:x'9O;yu ?VUJUjS1nV5۷wg?lj0NDѬ#pU=Gj٨FBZrMAuC4Ji$D\Ni}z-T65ZV2*2+a麩68QiVgQ>"sRk"AL&*Ew֤s@:V xF$3 lA. hԮѪk /SMJG)O3(z)_$S7JJvO%g\@lڻLN}oq޳z}~~TfSNKS8"&ssP`cIB\G23Nhx!E[ta ,~6ia֕ڮ`jğl=iPlt~OɅ)J gfkS䫙x~}'dZ ݵnPbwڬKNGW0Sƒp,5Kvb^@BgogvӓSmw5jZUxty*bicXV_SCZ^~kxOwz%ժa&qmG谴i vchS mJv> -Leτlے_iĠe:簎FY N~W1q2VWa^#I޷?'o=m]vdB#ll$aooX'=<^ݟ߳ǧ/Oُ,jL=[ڟ)TK/\Q=/M]9 'UN&閫g JۿمʋUTuW0拭nj~A>V>ϟT)%4jUnr@,q2LftB 2d45'SkA5:ըiG)P>^)nwU  >4r $ ٔYk {Y8 sd7.J؟5E ]z#P8z!fT _4l)ԣj+jVJNBJrMRRj:tg/#%%wTP*V$P੘jWsF[v*3Uqg5T2ghpp*t5 WFU].m60]9O%ӻ8&sXvW8eĪ6ʎoC4V AD%T' ȢP7.kPw6Wl ܲV({a䩙` gَ~y>K5_F}@'ŧ}Kyo-?]OG'/Ysf>c|eLϑ> !7~  q脲\isSu> 0_B}E.[9gD.)Á̎$KLiR۞qJd^hV'*o$2%`"S Vj:ݍQCdeqdV;5jX[oSs΍`_Gn7hG캎s 7FĈapwL6AiT3!xI˒kČh OǾ|SqfPs DӁb!kD<q4؉k>W"F7_tQ0Q i꣢ᖪG"@o!o|ܚ#5],"Lpea>zɥj|ef4֎gԍ(F']MOoK]d inmȐ &юMyq@Ore_P, wzY&NtOUjS(CC"ouF\ Ag?(>4V z"SG4LS fs觢>/V%ًXnN+ RkT!W͖Q1]>O F(XoKmi~JFl:l"u m-k:h4Ph`6yf 2uD-LDSIaez.ਚtYhAKg%9ׯD5ѦFڬwB pGX_e//o;4^}܂VKEMRM,~v5=JƉ)}V^t2sӮjeTL.`,5Bg4doa*l}Gg2-:Ӓ&T8ŭ*t)Nt\ch戹nNJ '0z-lوL}.tG⩹|&dBu OA [q=%bg5 2!S{s69Ǫi%FQM}` *a c<pz S l:eRC$jUkEk8^܎[FpCVWihϚi FO{5s_ZZr7K\~m01K/`6EW@ EHwq;zpS2PKt(憋aX'~QQ%S9&Fg%sA4ӈUrnPV'V˧E!s]vL6BqP T6YQmkd=3i{X@Я{=eTeBr0+~Ti> d>m9I^!-?4j1úQ"mKX[mvk6 Dw3g }"~p&h6WqfU!i1: ǩnp[t`ٟrhsn-AZ*:´R.k]uIXnZUk3P{k6C:,V-ӺQH:tҦA7waaXvqqT60 Tk~4#":S,jù~F]7KXnqs`&"KXJ)ucg/P(Cdz`z`/͞MT1~s]/@r *-xcF'w% 5kC1;E@_Z@p!YW.yT:>a,U">%aulp8jqyu$Th~9*ȯLwEڎ=#[B~c jsV25C5$I/FK9xXa_ C搏Y2YHk k񚅏yL!QbX ;)TɹZNPĹjZr̦3ؓwąs:N9@Bn9Ŭs.M=o ]e\h4+=U3P(N e"MFl:,ڀO9 =76QPB!Fzt^=G jiw=!s|=NK IvxRcVKꏪ*Ylkn#6Pe&9uVs{܏Dw ̂{.XOrtw%OxSۙ'w^{NcT67˞9,!zӛKb|SiXB32Ng5V/cɸ]5iZvv/l'Nw M㫑mџuW4Ѹ'H@TWkv7R<KLKxHXw5ָ"i .]ƦsO5Ru_5GT0{1憐-vl(*Ttb)0xpiNPwPThiC|s)=f765x'8O-\ A9ce4xf)aȻX*)9SCEsRI$a'`^ݽj*1GcrUmqZrbiT47gjxl#UVT0C8Ӣ5 Ou{9rٮ4r*6I樄Ջz#IYQR ҡz=C9h门=q9 KaVeMt$ꛃ5#!apo5*ln5nchx˸}+K .szeU?86!cs^C K|psnnm*2eȾ26xFkgT hAiU1vIyק*x%# c(SvB1)j+EFWyW{g/dvBW*Y^iվ[)eT*;aoGs.qxqm-nz.4o:?xZsEUs5nOS^hQ tO*i0N(cIy'c@ آS<W#SPMny#5}ymw~Y*Ns.q19Q b|"dJZ=Hl5(}AN=HGc̹(u9M%*LiRDs cJ@{]@Wg*T)CM3G9&ϦMᎰ993:Pv"Bu0Ak9d`Y iR1ڂ}Ȋ̔D;1⭈s/oUw@ڔ\eBF8UB'ZySk|O Kď }IO]cdm:-T"9&^?Tlq0JnAv)g+m3ncU7|>ypmpSS+JohmkG Y5=Z14x("bUJUh+]T6x-dHkd4%Z.r)Xu2S h)7UzSsog7vzmHTm,> `4zXc5; lxNȠ!"%ǒrUS Xr%,%?[ 2~}-Cռ붅Vs`94N~g۱,6Pj4l.)9aRR(Z@Ca|@U<{"v 182*x8;w~yKOXSd\GQ)6VjԼc\s1RF}sAUw2+X37ѫU5hOd| uR`-3/F7 | Zb*ꅃ,iQBpU W yUl ;lzNUoe%¦q0n2h'\A iq^=BaG v=9k@U:' (b\cR'l+VKU!BQɡVw ~+TӤ7sUDt' Qq4.\1cZp194v"'N֟%OsV6:䱔ǫNg0<,}cy^is`8qb0Ŕ!#%P\ ṖRQf[7㘔ݐdl!T 8u`PB}z/7ʄju9l5ͧV p!qƣ" A&faL$&ytB'eM!"}HQjJ%\٪D"!{dj)5ֺ+vPg-[SuA n6g$pޅvk!ȃ$ϬK6{ksY(QȊm^s;ޘXjK\Rܲ@`1M4)]HAI$=*WYRC+c~}Uz>u_lмz4=c'g_~T._ @!ڷa@"U<^z_~~/@*0G~iF\n_?K_Ex$ ZUY>緈w~X\~z+^6#7~z5z]M0dܭhOAՍ_櫽K/1A .JT^z'Hѷ~VЊGp\Ki>?Uz\"EJIRz1as~'Mz>3юo ryBw6?1 >"[NE_/KYCRJ~?/1;r߸&ehk1;r)*ܗа oWԌ}.\r=JE~RT}ULFW[lsbp&low._EJr+֥~ z?c0{.RV&*[^(Korn>w kftbʑ??g2J5^*TQ%z+ֽ.z GzxQzo_ 4a*fg8éf2#wT|Ns>m!GЊٷϪ*GV R>Wj쎫Uo7/>WtQ]4??rEܹr2C>RpޜD:Bݦfrs2J5ϭJ^%7j.nja$8QF; +fh #>cLEޅ6鸍a ?螧JeIHM+ٔj`b*tB`gHpZ <²MvE87ԇii7gңY8cb2d+Xß iGv} 53m@Cu~/YhXq;???bjU?NvVyG3N& mVsTJ2u>gѝNNs؈<,U1(*yNDU8NI\.j3 OF&my+oqڑݛ@|5;F6mmχգf=JYcxiP.+,E+vlWE:qU3<>*e.Gac/߻ .^ڥC͌?'藔T"yϜN2m֝Oah6W^"9!Ҫ{2y%L"c/@ s JqnqҪ8.Pi)J.eB%qiҖ2=lXoy!Jvmy4\?O?Lyf_&+i9gn!T ,]$ZXtw 4vN_RU<`q63TT*@ͭ2>=?賘YrKhGC yC;D"ݮ3\4Yt!kEt4D*Ǣmlf!H2ҾOmW3Lh7+;z=L:̱حFf}fplhHW(Rp=L`Oa2vوe(  >|eN9)%Snoq}״"=&]0*ovK;Lg̳rwmԽ[]]"hT[Sa|%{bDlıF!)vy/>6t32j#+LmZ=c&F.[9vR&p`U [x8579;s1Q)q803cb.7n|SfmyBHIv?0PusNjq8bQC/2Q<\7=sn[+5ۙrQ:tvE2}c=೩Z_/IkYQ0ޥ⧺tY,c5<J4jzjp0į< 6oLx,E\;\y0#U3Xf2:/?ybs"@W5 -BPȘ$;P)pep+-@E ۱h ]616_,*s0}MojDbKTP/RlN!8rNEXS }}u,u7^w/>#a-x0z DG&_hX`AaP+؋|G!gh;AWAn&sKPҍq*%q:ypzvs@Ydv b\S?8Gt,ra g#TBcؼkOc˯HrIGf#LLJd,N<gTBsWCA0ےqX_?y1|\3PZg?f9\yGtCL6q:',& -ܼ{pmy{\ARk<^Sľ(HK-qRg107R> IЋ^[+\שjHkIot@-⧴7V,*9 R\UyTVuaBbƿ1 dQ`v= @WX3RSٙAkXZ~IZ*4a.iC6T,wlJnGDKu.j+FRlg3r;.mSyx{WgQ*Yt{1op0/b3M>YMj:-ffA3 p#_qa!-kCSLxyByn#Ek~. ⏴ ֈ RnOyxM w͌0ΰ[ܭB%ׂ__B&x..lDJDZh[l +5F:x;K+ʲ\yW_@?ISo[i<ՀܤWvFe? جck-وj([ݿf06]I/]dUT&8/4/_3+2GRj*AM O9bur*),% o}L20~5L}(~xِ!8l܋ßxfʍbt5ůKK=ԼjnmdDϢT3ݧDmLΑlMu2W*0Dqc%a" iEi¸Ut0A/vcEyx@} *ΪQ^ﳬWsbdNC=EFf5xmoȔCWib(4ЧZ[փ0)FA+t>ʽyN1lƯ>0x8gAl+lA2FI=C(3G1S48?쳵 1!g-j7wnT,rlN u㙀#_ beĪ`e-?t;xoq^[7y*srnR13kOeG ەKsDG0TgIm&"*.|x]y{҅즾"&X :F Z;/ZVrusx/%zwV[{5^E0PTo]{]|LLM  חS  6(~g1*ҹpmE _SpZ{և-5 ¿ܯ; d9Έk$i TR&~ȣCL;1u ݹv`! \c~%{u}1^2͐5VƢKuMJ)PցcE bX_%3^<ŠeQniGyJW_ΊbcgCg'Ɇ8\UJpz,C/ ;ڊe*p}eԷ s̭l0*Rw (J2V7dSY,\^D,YcS^^cP@n@ l?(ljivþ[RTcm,x C qz^ h5)okѴL@lk^pi03sfR!W{ruE0޽P7WF*pFS' qa#kɰ }u'T 2rxѾV /5i7Ra"ԦkSn DS @ߺjNf >=̅vfeԍƱ(]g/i\Ӌz@}ӦXiP&N 3Gr7v-h;AA08Het;@TldM7Ѯ8Vhׇ"t-_.#e PglqAvR~IV|_JU)wmF"rU*B(ڷ v `j)?Kf:+R˗P*>ڞX & iӨyzAn?L*vʺq:g!ZbF+Jx9eLьF``R\',xҜ% k^ 4,j8L3r8(b(d̥]UgT/E.AX7X< L¹8z] >&Өyc/u?h5SD#x.+y`tvB4 %{,”fǥC} ܣG ԏo X$wgYeCPa)D!pP=H !P_(w:x״Vf%F_/(J> 0 X0Aw {17drn򍣱8N58or=C\eTs\F*.iZ/""NCƠ6b=Y fFp'_1Fa,~^ѹvL%NZ;Ҹj6^Y]NKQ9jZy .[;i euʸf0S߿IN{KCg\(-~ fA`9ka.`:]bRl~nMw^ n)*,/@rA^rGJ"SwXT&Qi?X9d\zeDzE@濾 ™)uɴ=_i\;]>k#~7,b75tStpyMn%OG3⢪y~hLcah3veÈnV꾦0/y}fwf h{`r{ΜRq&HMɸ?|i4(, saky4 =LX`10̂^|GBM;(3O,Mnd,C|)4VD3l@v!`(')il"++(cXcJۓ,z@ Mw!RَCh9J- ϓlP|[.lxD(XcP!Z A* -;G1*̳Es+̶yS=:"ʻLjoe(#b[ ϼn:Nx(cWeK^)=9v 阱YU{͙;R=it%İw1&˃L+e nkcɺ5W_{]X73E)cNO[?׬~y3]pP9v')@P܍+y:L}v_ R9iCغ1l&MP9 3.ؖO0ipo;u12ͣ-l4W4Dte_aX#>ޱQ!YW{JþiN7eȩ2 \P]XI\ y[Z#s{KmM)%<ܬumf:Fߙ7uh&(RPlr8͜)rۆe&<`Ru6cY@]piX`!RH֎ =P;n=\3" AH\5'M GP*pF"_Dv8ʑ 59w6Cv uc`N,eBݢlS>`-zSG0+US_`INk(O#[X5n58|T[2蘜)> Rl*FI>:]zinwOMu_-R՘8 LZ4S(̞|J^eC8ԶMj80 kb:#䍥t?x Mijz"y4)RKHŦ\T2X4#ڱ݄۳n,'vY"mx5 ;+(}k ˿lJpo#/(lUQp8S5NC/-76j%+Lps0iS i:<@h}UӞbĠ~߃aQ7#*v}}7GGGQ$X֥reۥuqC1ʧk/X7pJuVo3Ji%FפZ:VR 8Vdeu-o=k@-.E~D~9j 2ccT2+fR-*myqnLeTEn9˔,5b] N(Q 2ݞXmxNqf/-WT3,LQa|.:-Ws&1BJKUUQu/ Xqc̰ K(uf UkHL~ "YYƷaSa3jÒn3908#_X4@5α}pt; q *m\AZ8r2ƫEهR> pza=75{Ģ2W*:@Z KoX%k~􉉧P@5RI 6UET_vN{7dfk_!N9%PY7ۤu!PSTBUroA%-H"2XVGIsIQP|п rB5.p}`!riC&n tKzL˘DF55+;O러DYElA -grl= 91Q+.%JSS2ӯՌ/^1!􂥀ٞ+hc^Ng>pdu9:M37+5g,EEkAy*lFQnZ~C}!WpwU7*k f6fQQjȝ扺:ڟȧ l kmAp@fC#ˡLqs/$;uu; ^S7+M:Cдۊ ;&ic.CgMU}'\!{%z5X:55\CQTW8fk>0  w,yB9<v1{ܪb6ǴW\thP c|z |6|qqgM9V:B ?FT9ה(7G N8 iw rx! jϡ(ݙxX2ʶcK5}i=u5Cs+Eqhj׈EU_)!_mK xb珙@r̍l2{9C,T(r\rCb\S'J[';K#؊!*UŠ jcuD5)ia*c̷muoAd`@k Kb1קoN`DR¸ , zb%骻AϤtλ4Q,|acEyuYֹ-|A9/iV^jTF/LOvpOc9C=?빉Pfrzw Ɋ<Z.˗>ފfM;Fh3V% P',-+a] KgDZZVq9D+f=f RK|7 1eQGwt9T'i˓ԏ ^O9Qt0 Jĕkkc:>[~q Dh<=&`{dJΠ BxWPt%T~{i(vnPF 5KC"H2\Wi'ٹ|8P 3 ĸ1$t} P3g.%{n{ -*k$OA<@k^{VF rŴo=wίhT 2v)itsrK)0RQ&̩[tg\k YmZ "gdIPљiӣ=}fgl8l}c.ǘ4*`fj\/ъAg̤pO35B_2G7QsʨhRၥI{푱at\{h![LJhcu>D׵L@3([|Fq<ĺq4#L^jA8}9#ѷA% 1K_V`菊j`JsZ, n5|DX t.}%ٜK^ p7+2TPjffn&b..`HԏJ6kI*hVSe+j>ePɖW (prCo8W"8"eXΐYMaˮE5\0QX#q1A/!~ϛ"BfAyc]!N ^ٍve(YA3CvьMҔ\4 i8HNPeLk^1,a. =!'V2r^XK֫`!*AǼ!u# -:@׹ Z_׏JE%1S-naNefdK;ezd 4')6;Wr˅)Sw٨ w {JuxB/fL=Jd2ڰဿq*1ײj0lX:jMޥ59=a_~%x/`=vf]VWY`VHhkTy?ݽo +,D6Kޘ:Bڕ ‚S$93k7WU|fiD5|2ߔGRӻvw !2'<WEo{lK!hvz[e1}fo~¥3 _1S_蓏*mR:Vp8qvo@ 8CVK@;$ eBs̛\AC #K䎉fU>&p*X/tpD\"X Jd,2e h-W0ֹW0-!;%.D!uԱo Geѭӓ MRPe/*%̴u89Umt'U*avC]ʼn6}JB GKU+xtu_tE,Wԕ_N1Tq1T}?NOw0  WlPKtK!*]He|ͽGl)cMÓ")KŐzEas>*O:h4Bg+/ DhlٰykY̺f.HJAH9rDWq2tb6Se۪K*,gC@%U0tWȻAD|Gg˒0qbY VZ0:V]Z")}Y4ltNyqQM13D 9ZΦbG&nҠÉg\$p3&%UI}J8ޓ( N}ҙfIc26w@z+S2sc,?Xg^c$FIqUl {_&Tͷ̺z۪_އ+D1b^gCpA\m>]+1`R_T ;sa IZ|[9s1"n 5CJ(auqݭP:O4.s+=rgЎ2v< HPn/O8sbA|0<%8^FtA9԰Zw4*s,r8@ hpgBU+o7NEq @w ѾoNd\W2oa0sI"'Ml)S30f5o,nQLBk84:i)LxodPkg\ L/wK./t k}BV%7kC7eÇ$h! xGZ6 &z?+LcgrԩUӴLgC1sӦmdh:N'W~-LLsT|z%-X9h[|%%Ur)Q:l+͗|CQC qRx; tJ 4_Y͘|fep;@ KcL '|z852w& 0&QڽY(EI#7ˈ[K Կ|c?R4ωe3)G Y2q) ?XVx|L`QMavMҀ YQX%mpg3M`x J+oˊ-0_k?_n:1-# n*vjs/jxO[U :_R{C|S5IpV E[ tDxALZ22FAܹ§KPv,B FNVp?E}f$;L; K_\w۲sS>n:^W3DsMʲ/OB$Zt=|L"~Yrkl@BO p1R¾H0M ڨA+mħ荆qJPz8PJ@59" C QIT6yn.v#\φmmQj ^s/Ky#*"!6C |J&֘2%ӈeK%0y[x5ᙅK"!^b2Z2i˙˟ e)Eݯeqȥ5j,3]lVN2ƫ5bo11u)~gz~"r_I{( =sɃT{˼u~)9g%.XE)Lf |XI~R3/WI!=#)):J^.Zqܑ[@aGfiޏUYvNndE䧳LTTJ^qPY%'A8b㼩WM?1%V^.Q%{mpSC;#0$ƈWmTˑ5.ԡ7QU~R,\6R!:]A V @x=}fơLy#=pSW A&h>LQ,VY"u9[v)̣j2xf'a'Zy23#v} ݡs"l=m9(&%q*VT N%x[~&%~Sx%x X[^#ӹz̫S4dv:CGPy마NYНۀ.VVD`r }%z~ ahr1b ~GRSvJݵs2>t2q՗z9ˎ𣈬ll_(JzrӨ>!R2z03gY>Ъ]61.5Xeݩ(/ӈZΦK7q,Ctu3 hQn}2)eJTfp)Й+x#3_fMƷeU{%T;·B!$3bkhr{w+'94d]NAx=j S+* m9-`u8Ҿ%Er|D5 O̓){]0T8@<[F?5@r⯷]"-X!O \`b5Y6lZc`&rbanK?@FrE a[D6_M4 JLq3+yQy=">龡+'%G70j*eHs=X2Y]~ muYH}‹28^Sb8QT՟hL#x9Zxk~!¨|\6$p }%7tK' ̎YU3rzO6Jۙ3P ү@f YY޸] a2uC,hs ;,wcmcP}cNC A0[qK?(bYiy 8G8{xѴ+ߙ*@k6^N\cqEB0 ![4švKWvPR\b-WB}Eܶu<ǰO*O7ַ+fvؖ0 FkSb^ }n͋ףFN5dPNY(/-VT#oըfImn6Ʀd@B_ISў+:Ni]Z2^.`Kex?)J2uM%b yFXf%D g)k1!jwGO*usn7S2wI@ʢ1fs 2RJ6R 7)?Mbfzn'L"&E 1'z!R^FK!}Iӊ ]bZ@Jt$6^.v3+ PIJ)2FsYi+OUVMyDK_dǰˡq9Кa va-de`ģ|Z:=yo`Xw1緘δJqYr^4|t乱G,X)X,S \PGb_I`cv&H9%V `&6ʼ so꒩ 1CAo,))>,Ez-OA g0] aK֞GШ1yd[T6&؏q ,t`G_&s19Pg!'7 9 fwg3I.eDc>F)ΉLWY Y4xL &,m2weN!ĽgTh仪LqZMd&Xad\1243+q 0H)}QJE* Fk"G>m>ӓa!"{ѝ}i  pLXQ\< /o߿݈L 1 !y 6`dӻ2nX)^,ZU2F'2q}rTAaVUNжYje\=]fFYږ\/3$}.Yr.kCNh ;Z~k%-.;!Ny"}W&#y.s(=/wؘ>VO#jiЇ 6kTE ETu4,}AGXo/uܕ9+r8+ a!eM1$p0>"Pe F\g_5QQN;C [m3 ee_pg‡SZ|[?dfVl8-mJ{2G\־g'mSM;1M%ҹz' Omkn`/ӆ?D:ԡCyͺd -f/Qx_aZuJi.WlDR=/*EcnTL}!=WXoC|-v3u9k5"y&|X,\;8`<,GCkDܨ)v@XfEL-"\*s([߫}gC2E%:*3iPX9ݶf27ԗ6@4*c!ŘOɣa _s+8秆i<6|\(y_)a{,'78;[ O{\4.(BQ<!/oio.ml)2b!q d˿MbfT0j[he]hyD`/3w~I\^(&,ےÇ'C QLЩӿĻe<& `1/ PwQp=YY|ŝa1nZa~sh혠IkԻW YYu\J.uqa).A+sS)Z"7u.!ʤ y{Lyt˭}Z>k)2:21yu7K;83Ծrena4zz1s/G$̻Q#AX%te}"Ef51s3[T/j n6n*g5*+iNP.Q" ʳGf;Fgf6Z7*ӯM!y6d37K0JƠVvgkk kgK5\R]w2_s,}Ha5V(ԀYyS%_ MIB=XP,p'#l%QuSN}FTZ`A\p}s*TɆdٿYf<ޮekΆ$AϼQa)_R`~ܰ5gl0 0=_V(^@|Po3,s}HfWf}|Yf!~ l#"eHg蜲AkѦ98B2D+R et3p2IbSal˼04#7qljۼ@}%,m^rÔ5 ^&pkњFJ0@ -_/_#Gt=ߥ&*z&~Wa\תvj[3|g'̹,a73ƜC:u3b[q&P;3n٤~f4l#h0;eN$.\׭Ds_nI[L($S#jG1:e[[a :Mߍ9sKG1fJ"T/H?TJeB:lqIbgpWl>pd9VѿD 0FZ\8L_iOyuTՇٍ̽`c6#ӬxhT~s-Yؕq3n2J`M3*?b }#GeVyFof<.0˩YcÈ0[N"Id9뼭urK.˲[)A=Rs9Mq2#|ͿO7~ʂh1_mk#~o05 D6Q+_8h0TA8~!In߹+sWJt:mg}љ=xVfe{9N_Z0a!b2uO/CzMl+c*Xbά>@ĥ ÝJ+ҏ~p[s 5pY͉OɹQƊ 1fj|Ҍ bz<.;:Cp8<ǡQCmjqL ܱKG J/B+W2x3e uw5'ZY@;ObGAylz˸oG,_+MarV|E f\}e}B,tg>'򏥱{YC@;OCs&q(Yٹlʬ@]IONv2^j , ^tF%/JO-6F]JD!n5۔5̱ooS,_ghe;ןJN zX%t/֏T$+g/zCP5V xP/5wpVj㯩o512]-#\6u0BqWXegEom|EuS"J-Z&k/gLp2ZMYNs,F: r/w}6l[xunU6D62#]R-n+"bS۷SϠg៊4CJl_ Ŷ*=SV#|33"9pva7U&,-JjncG\5GflXruE 0[ \<^~YSe-qybX5/\?tI*o\X*efؿB[]#dOywNgR#Srňs%0?(, M3W_i|c]H;} PsSj$|ɣm+ y>ψSs(:z;j=G5yFTZ^ 0WxYL@PTIR3#oWaGy'b.\\cޅMS\0S1pŸ~?lLfX/?eMw ߂ozhu#g`z.,0ј NB 0f<0S~+@nj癖J'i+9en1:fjcё0Sƥ-L{Dys. vzJW̪Z2M2hG&68F,hseCGej]89V]X[2E~_> 2؜dr]B ۼx)܃Ŷ:ܲ ecĢi{\G<aIȕ/+q.q*N!O"V$1}Y7>VܚeGcuocBV0jwcmh,By16Uvv< 5BXLy)ĽVx' Fr0XwaN.20vgcQc4H>&ǙytKH/_2,]#-ݼ̉g)Ei71w4Gn)_ $J޻MGNf-SamڋE3NqU>鈀PƥF-i=EvVF9-U<7*~Ia-ku21O ڐs#Z5qc1B+9n1@=tӆqʩAyw,ZÍ`+os)"/%@ Jή%^L6/yA,iT&rSrwܥGgICבLOgfg&0E d4;Sg2@5fSAD:Wyn zX#y~U7f̸X1G\U{k7=$vCATDw7q1ü;1 T'RX0;S>^.' %pZ>aH:i*q?}=Q J.:J(OCܔf#I 0TKHY۩-e; ިL՗A7.We20tv:ٝ~g0*ߖZ1!LqiC.gb+70p`UjGh9G[ q:yr,d|Զ 㙞 ?=sq&Y=>O-n0JaADj~uMIk.vDsS&Еq閇0Ic^f)q^f9B\fu q 1+܉TvJ{&r`擴^U~s0Bf nTEEwԵ2;/~p:]~Rƻ"#:OKq^%s Tc{ʰ~띟SЇiv G9obvche\3;@-n=#_g̹Ri)}=ƍP_!uNn{[KW|JHXv1)fC]MGw ޠ]ǫ|1С\,xX]cu /9Q; v2qb^%Sat);3Me|Cr9*a`3^nwz.g̥qԮӡLG? LRcge8άܢVxR/y%<}Q==Z6c楛8L<@ k=c9 %)%Ǧ'3~ g>˧4coO9"s7ـvXwgt#ɡFJҳF0І2C9d¬wjAϏI2B.(+)Ybbnc+3G0X;ͣN"`]7ܞݝLЅ(>DžʶQ{NjS]S]B:4x%,U0:Ϣ>=KVF}陔X+ai3a7yvZ4 )ڃ[NDwO^~#ѣP2:Kc-k.Ȋ^k%2\˄szjLL1&qqʻ3dt;MADP+c{jh ^&Z^ +%{âh-bծe~#5[PFcB2-0%n2{LѼb,~aSqȫU6ī6ʋQϻO>'N% '1y}<¼L!bopsb\?hz4WzQb{ b'<]#kUQz9+-+Q! :1MOE\el_&wYMGImOV?812zƹ'ȷgg3LՓ` 5R"7틤.`NS%ʆ=9 wrzns9ۜ_[/iVcF-oXm0MR <>Dqǎ=Ftxϙ]5s^~gs4+7RmPV~jq (P+<1#0Q vD܎J`ZV{5I5h/9$sQ6(;kSdeivJQbssmi~c8Ks~==" L32cxr-LLgN`2Ѭ0)JDt}*d.Rs0q]%T-hJ tjLtOi nvo:6A/Z8Snڥ=xiޱ7,F 8gZICلmKY܍PܳWȈM!ꌚ/1q^;9h= SQ̒R,NW~T6޾ed1~]x: +]438=Ǡw cQTucqb2[zIk˰B.D37(wvy*3g/K9xeJ; zY{J[*.)^%~Ck8ZW%刱m3!0CX/LOĻ,>J}(J%Td~H}ѱCf/a'S vm GInw bs-ǟS!d۝RG>5Īnc!vaX xYUJu\o-;17K{x/ea}NJLf lN*4#| ]f_uwswĿ 3Vlpg΃!B4%,Of}7 Ny%ܓwR/ѯ^/5 jsң屪˞ۨ$+2f]RN/9~+PN*@sLĠ~Bʀʥ ݾƥYUoZ5,6TgUBW jU[۟H*Ú0 &.1p#ڠWAiB]~0}+db ]vEgh):͈I(`|?tcQXDLwgNɨzae>S718w h}Y3T W:?Ƭ{況}0lpao$t6C6}fW_9DIg^LgP S!h?skZ `{|5P{ m!g:"MLC= Y}q+SF22R(Ļōyo"&Ne|+-7a5 48ӿ_ގe GH˸+q`'Bgz6{~=XY 'tD=1OdN7AeTR'3^YdNDy&} z-S Д3{eG {"[.o;QxkT#fMf+g0|*KXās^Cܖ3~bm { ]=u8z)ܠh+1]]ݏGc(ؚ51@iLx0f\RseHɁ͞bX㈻"Z;$X(:89O;b/>}'髠> $-%TuY#MXbep pFpƝb")<^.eq ON\)}!3p {:VX Por=4Q؎=As X(^3<̪L,}ĵ% `勸<@z^2Ma(-lG׫X'BVu/XqT[IQ0&UNV#/f$kxzzkIe724yzo2Wa4@ vt c$hY9ε7%w% Aٞ`H8'()%u3.~4py;.Sxk՗fSobѤ̡ 萯 (gs˙YzC lp@daLYnk{f1vnK\YL:K) *K&,ρ~gmR/KdQ=WчCT\Ks238vp#Ib-c>P@a&h%Fos~"s"Am1L#,D𘾒`do&fqQA4I{ē$*@Uڍ8qK[-j z mtq+0flHg9pL )݄v`c>#<х}@p%ncџi"T1+u.+d^*P1n}y#SL9G_eu=݋1}aD>X6:[;YzOОIwl;AHxرQ-r ӇYi3Lt^20E3znsL0i[rvwNc}7\Tj|ٽ ǥ?2S!2ƙ]#fK^BO1,KJ}-W傰xJ1 秴/i 0Y-}3-(h-N_.W!ZU0UҎ(s,50u3(ryl k? ; {,AؤyW_>wij .k hNҜe8/ܞDvҷ/ C6 e1h/T2n!0_ޑj"*ܗ*-Tfx+`-7D.w*_Ϫߤ12ޥ9ͶOy 89yv &&q4b"wR%Lm_7U(2  2F̺AvT8ZT`)92ֶ̠w 7r].XPm79A3"~浘 }(<#['M X-̙U3Q^дP Sh9>m|])5JhTuIPY-& s49ΦLŲ yi/c%C}fZzz2_K=cu7Eyֽ1Ms;&,[UQl-o%T؆ ;J`'0pԾ:Jke{TJ;s`5(<] J ߈^wV%<{\ʧG \2|Jo%f(c~&r,W5Oiǘ`M Ûo%h !pA(`1 (CEch,_i5Lc8O*Q`M B 2BW(Uz$0&w˳` 8 k3EH\u1̫W FڎT蟑ƫ76Bf~4kq5ƿmX4jR`)rU&Kd5_hMlalLD&~pr$zj8g%z Me\eFFiӏFopz03]3ǥF %PJi/^s|"4Q.bb.1V1j1rCzЍ5g)}a'I1ݧ[L0 `T,};jf#; *uC*5`ORܑuҥ, 5X(s(1}Kg@QPSL/\Muxj%fbtnKჸktXQaW `)!_ 'e@%#6pfd,'w-"* uIpaMv*rf.9"eB5ǰu! _J+9^&FS̽4>/?J>Y|jjcY(pMosuj˴"<: }BzMO1ǯ2#؏} <z&Sy(VJ踄N%WWĪg!JMs9y#pplЕ¿4dǙm۴\Kc)xU@(F>C\xZjc2AcW-t3aќG.9EW 5 3bi2rܻTeeЗJXBU60"Kݱ`?/7>҈"1sZu{nb wipt{ʑ1Nc*Ѡ/rfE=b^950 ]Y* pq@}e${"QI4cw#~ص~7rfQeoDNefjԫ~!cN.fp_F%W9fs*gʢ@:Mn Ö9>!Zi_AwsQJ3̊Cz0Lquwc$ aԮ '%̹ ֮Q` XLjJ?;1)rzX_2^&&aRu#hwacΌD,%Ĭ-aB;-L Ś#E"d^gmeu"Ըe[M'0uVBb& (Oe|&ԮRW-~7%M,;8`:pJgH:8\ L5u Hu5ƒGJ+vk{RbQK{eCw@^(Ꙧ9D}e&ۇg9ɂ:!G0)f}.{C tq.4@0g zF0f;.C`Qn7:FRʲl ` ΄]Mb--2Hx"NyaUѬq3pwCi~!fsG63E{ť="[~AzNO5D 8*ݟ cKs=<Hi L_ڗ >`Z\ 90Q.C<AN8 4@rcw_lu,>{?M"򹒍x ͬJ2a3̵,Û,S"YmJQ+3SҽN`9ԋ1hz*i2fxf(&ebpT?V X>f/<]j1^#JFGBmn1`.U #k *?Pmx<gH7C ʷj26_#3D_KF8f#cҨ'hdI^TJb1 v&&Z͕ ip5;tPTXqslFi#9jg̨w&& d{N!sewk~_$ Ji#YrPUb;f"/Kc9i z5Z=<55ʢl @|,3*>铄,9L$! ϡkѿ]>5˛Hϣ~YjQ1T?uۊdڹ2^͗bc"S''dNMxA͹ _hP|qEcPlT jϰe!.-;yҭi ]r\Acۜ 5g&Suh>uc3}jvBb`.zi G702gP̪bY/=QLh0 d:KkY|3cI!\j+2,GXvc$!8^J:A^3:B5DrK<2=BPXJC8RрIoG'P eep]y _#9=C߬2F 6i J.g/Emr>:=(ff,tZ,C3ZoE)I@~4@fHĢOX8|DBɾrDe_X9 7! CC}>"TR@ Yߢ\KĪ7d73}bw>YFRS*(=sa}a8lje}XR`7M9/Ҩ_yd..k d֘ W^0,%J :_XY`C/A+Sp34#Bimeqś*醥0yk:53b* ǘ=Jv2GieR$\QS}c(ێ,`)ŸH<@nJV(.sA4u7٣B\oLs*THzWTR\3} Lښh|]hk,4*k>hNg EKzi~Ie@W@/Ó@`gcѴJL ~\lZmm[򩢧91;s;u(-re^]18"WA,oi%·lF+zv\T,J0I>JNJc9%WZ=22*ehZE=AUxQɿi}Y\E!$վT'DycmpVly3( FKt40bS<:* 535 ]~[:8=>2Lec^ԩY|76^)1u/ "WT*.UI% o3 rɛ9f~Rnl6̪-;N{6&-Q>%t59 =SD} =35aAy5*Bh+mX7q/.:S8 n[9oPw+טp)`]_3c7)'9әUܰWŌh!f&G"^L2ZhДMZD:y!:?4Z[{gK~9 v>O%7|K_XGYYLCO}X=e*!1AQaq 0@P?/TR ҿ}B.\ ./B.\r.\HAGqcYKH:8Z- ^ r˗/+.\peƢtr/~\aU@˗t(0Eȸ.C \(HL :?rѹr˗`˗\ yʉ 8?ĹqK?}<=1[3=P@:J333a!/_\r_K.__a6 uG=02/aHtFTRt*S:$r˗*ErTJ+ tW򨒥tN+RJRQb躃^eAX._*T}oYR W&[`UiQCfU|dNL#Ѓܹ}.\}_}/*J\qbqܸ *U[]ZS]@5T*TAper˃.?Q%tu ~@6&B1s_n\Yrˋ/(zBTI_en-q!c ҄_*T\/*TR}n\}n\Yrآ+miHrM%JTQ%u*.qt#lhtCۡab=0ƒK#$u\2չrοJ+/qa O)D8f՟~~%uRu.\} _CsGAp /u]rUꌾ K.\Zҥtj$a0^J`Dfaf#% ;ch[$]#|oM*!P%J/lJJ+e1_ٔʘrԯ}.\r\}*T+ + l|B涞 2#ԓ.5io_edͶYr˗JRq ˗._\QǢ e"G>BQ(*$p`˗.}C*;.\r\}jWa:nΠbi{x* +u/K -(,wF* ވLڮMsX[n\r.\rR'f/6XvkLJ< n㺪eOF A* M\a2X\uV+d4U!"`w2yFXZLPr .CGt%n;]*B `[ekIܴ(䟿撿rӹ0z;T0Q8HTAi,splXUo+L`Bj|ےpӎ^vAUTUr@ ݩxF- ҉6X`JVt*422tr˗_r J*_NB|gh6 fc ANs%$5& 2]FE\`awt$K.`=//]W{rXIPHͰ]/l h4גBlHƱ#߿ig~0)#Q^B}~/1~isX(ϘK? O)׼ǩœ| F":_*W0e9꧜ف!NsSUKB:0 !JoRv00B#< dSxKY/d`y Ц^‹c^/ e88)Ef!PӃ{0I9!npHW .,y贝0rǟ5r` P{ioPw8B4)ōj*k+LvS2riʆT =o3#Vf ;+ODA, B!n=Ņxq9MBϓ=cf%n7-o%[*ϙV Ru}@+E?\rѹUnTJDK1V9F$yQ! ՕbdaR8+V-)9KHHW>yuhw$%5˗._r.\W*\+}vEzd(l0(LZ>_T0A r|m,%Zd:Jk#s{|22%baizIf; R[*r9>0m5V򚔆C~f YuӮ 7 BhrԿ.\rɨof);`S# " X' 1.Xq ]S!qr#?SdHrX^ ̏:5QtuS&Gi/v/99IsXr?/B082Y_Әjg?Ws[O*j]460T/:=e4XX-yJIv쵨<̮r I<1K˿}wLx)P!osAոm;:QPJ)^׵6OD*& $NJ_E4^ ljRҹr$RPG"DzcUn W]JRU[J*7 q!k~JU7.ԫFv)ح@%괡_.;3yY7CՓ.J pS~KCβJݝ[ Bo_*TIRWST\z,<Ϳ;#i}=o+o"L*Y\ޞC-eeuIyW*j& cvsA-koG ZP&>.(14ODVwwwzV>+ @ ү?#P ZDHqV2ŔN!S-_C8xn$_w.\_wy`堨5SP=[]Uhߨ+%Iʺ!^d"-r׹R=Ve}t#TWM} Ǚj'kLPY1P1 #c{j0{B|l2s0e?Tf4ypwFoʵ 65D"_ '%. C@mcǍy~&mR{ 7J/H N_rr%J#/^zmm^4Lny%Q3''=8MAoklJFNפx-e˭+R[Ÿ.Uq 7.\"UmIP`̺֋UAZ&K8! |sr'ĻN**WG~0UxCoAMrR)Q 1ejleϭTZ\ L RԡV( %r7(򐥗FJk&ْ+l;nT "^6Al? QEB7i3NU z Jkk0ч㔙f}X=+E| =Cf⮾kC?5JӰnJM$q 77)RV9Db;g{3jø ^ M!{J&ST8b0|}n\KrkM ᙪg`N%fi)nX\Bh*~An?79^,雔? 2˵`f+ 5Pmu;[26aB[*z2,!MI2p9WBmc,tzWr˗/L[)+ZvsCڊٓ:EXJcjnݔCrw _L܌ؽH)ݧ=@;pU/%QvS98㜭q?wrSO8L]aY#;wѥKiK)c7)c@L"/[1JXP`h[y!EboeZqO{C#\_._/(4rRJ3ʸ"9b5De]l"I))?v2ª#bu+'E`⇵k{ݒ)ǿ`BW9\%V, ݕajk*O*WQ̹D׶:G{D|Lcx| |Z u;yϠQ)2❘V0Z%>' ¥={9 J^rl!,!߸2, JN-`!b`D[QYvcf`2`)q77gSjB6>!ݼk˗/r%]*k#rf7ӈ4$57,`B4#*e)G?,1̺"ިʇSk-tTݨX hEs%%==u<8c;y$Iڢ_O37`|& *u}HTj;?bielU<dHcC,sD$&651ah-`ERJjXh` 2_D}Zu> Ha# ʸƔ6?}ʘG$KKK< r,1 r^2 1â!:^qm̗zi~!ME{=OVHv2Y._}oQ2T66R^}H?~lEk9S }eƕ=O If¢0bXb7sv<.\zy"C5olLD\!6 Kr}o\r+øj&ʣbxZr66.0h#M`킣UNQ,9 7ZEZhri-,QU-_!b_r~LEN% Y8Vˢ\˗/w-eD dv>'iዀ6"C=/SP3Co?ք׾n6'{A*ntf.ܼfg[h4ݧ?n豎!}X4Z!)J7fdg3pc+}ށTN8M{d0n䲂csΧm>"[Sߊ.ϧw r˗._J7/tPiI_ ɦxc d5c0O5Jk$BVe!M[FwׄX1 bCzeӫ@څa pd瑗y.pT>Q9H˓u}ru/jW}.\˗/_[k r ÿc3d0EoUKh0֯f*|b:neоY ʚQMN#ZbJ||b#1!b#IYb8a&£0Uo!J^7zG+"+B1vP/Sʌ_JVRY~S+vy!TiBɸ|[2%Ɏ^ kJ;[C;pTX:ZWbam4ps}53c2g[xh0(bP+g>f~#j3m Y2BT1Wous<L4~Xu *~be˗/\"i&)㝻9_k'e3l-a8/ A._^,&wRHϘ+ z3b@LTz&^G{jig鸎ځM/o+3 ԳRrd4BM :nI++Њ+~(D,)\Gn<:e1w8~f7\2}La_bm5 U8#22OUM=хJ*A.U{\+-ێ5L?.L9mJ0TJw?WՍ]^UM^Xy{6(w," Ev ;QB|`X7 ֘|{JzW|2W.\r ev~ }?|:Vb<8}~*)q Rӽivj $2pTh @}e0w~=Ȥso!SyvCq~? ," v{':#&jr Q}3c6 6'j-MرSJR&tt<^RT>gץ -GDqKƭЪqUqy !pʏ"ݱk{Q5,?f~茗U]߃xbݯ!T U?uL7LI!n$ϯw/u@sɳFpb:(ٜ&v<-!Ji5]ahj|NpqG7īf-gzWXp.FX}TD嵍/\< lwA-R]ц7NX- i>%tB!rls%;.rRJ޵*_|U$WoJ])yM3cOi8BG &)t"J6K* ^pk$%+Px}Pp+ T&IQpς ئ$c+i v0Ơ.܌bW!Zq4y!YrC"b6VHJsv\?BG3v<6b ؀g!|0GXɹ&\  C?8drSl͓fGo$e)cZ5'ҩO M[RRw3ȳ+x7e8EsaqUeFEApJE$Ko }o$z*hsk|gs(J.f!E ὏ `,yC}J"ӤKxNA.=]мɦTӲv34=(+ T1k)L`XR* (+[_c3%UJ][%s+?ځ t(4MɬnMe=̻@a@Ƽt T's>F½ɞ?L.U}FE[%y8T NrDB QH @m$ +xȕZ3@f"3 &11T31&tX#ζ4d 5/C"i UKɖ/0P_{k _o,8y^1nx˲1f,u+VDt5߀)C@<:g`pBVicАѷ]ku._lwe[""mƛȝcpg[}(S`ԯn&N3ɃFgusf#0eqY 0 NnuƬ^Y9 P( lL@N Өy8M<8pJMn 036S4\9u-g CWkU˗._KЮ͙0mCE %ak+>M]1~bs,vCΎ dx=8LZ00ො^o |=تUDϴ^)7V\^Sұm (> bjŽ3 1k'#Y2'FNQP9P'?&zԩ_.=YkіU#s_H&L(szf3ty5`'Qs4$4ld|cU+w F1Qq3ev0KȌn y ZjF>X{ X5EuƠ/wHnͷK7%$U33U|f6cPaM{ƹn)7Vþ+/m`3N tݚs~ N`?*`rU'(Y.Ԥ1#،aYGm) X%,j*v~ێNQ{[W(!| Ǭ Co5W1Q3HsX<]AgT6?K*OOWm!23ow=NB/CR[%L_ aB˖K",Dl4oX}Ec{+NC_ <}#цH22ҊPB EW )X 1b X- XD p3v"adv%j ¹ca-Kޣl;Wg/ F/Y&Wj+8lßlq2N*YN0_7‚lՙ> ͋!&צ,[L R>Pq%I/P'ǤXc0I?셞*/aXA PŶ im>J4PdZŔpOP[,߄Y@+UeeIYbSukQ3`e#Cp4ªddcMU2VKa.Wc Ԧg]7Byxo>=h~6~|j#W%.15Uo_㾗/꿃SWt=_/10)tx ˥e?T ^~FE b ž'.lT<69հVDhoL4nk_-Id`66s^t+ )Z4i 5`[dޠ~Ț[jA1uNTSBhƫs1/&cSMiLpKxqV>+aRp!/?bA6ʬh [1gNDZg?_V5N4jpq;|E=WR F_'/g_1 Vo\Ꮏ&W7J '-UhTAC/"FemyBdMe®3p/Zb?Qn6a@$2Nl8#@9le#.!9pzPXIS +q*z4kjs?8.Rv0.Pa]438gI@8 mfh<4T$݈^/A(/mmyTXmeI{KfnԗUf%aܐ[-N*YK c'x녮gljbqw`wr *C[cpɗ7lӫy X0̉oR^U]2 k8[aOTk./ByBllNDǢ zr힇_ORkǘY,J;MQ*˗6S 4nɥbR0K];*y<b,WQ36 ]=t|v `ÃMxC Ac@J3{UԢStcU 9=gT9S 2I?C2]ciiBhFfnb[bml65rexLULY>8(j.l\1UZDsue ,MkEBƞU_%kbvqQ&j^,y82ZFh"-d N`0;lmr wREE0k`, b8:Z%ĻPklN;c+8e_[wc8ߗe;AsGvW඲_dG¿~12[ǨZudҥ}]+p؏@ 0j_cVgٙc:W}XF6W JSpߎ*[Tp*RKr܊%xnʐ,N3_b| D4 Xp C" \iż FypMd&Yj` q4t%*ʇp_`j9Xv-FQlee~ tlbCXZL)DҳErj-<8\N&9cx`51F\YcWGtn_5ÕL+JB;aB hdI|vJHgjbQDG9ya`pfzFԿt 5Zu,4Ŭ5z׹Ah!Bj)V4h$vn+%L2grI(Ҷcɗ& 9sPagI{@T)(xuZj'8 uݩ{@XBȮh9HX ^E k0,- `J?-R#1FU<{U'h4@ x@̢ͫ>(s {Q= Ѻ qIW`RgRPR эoe4GMQ«k:iݟ0A@!\mB/ٍEaEFy&]}7 fMxaBw/9_-ƗOy mf*gB'Nj#/rղ&e0`*#bz^K Ib}(ow rH y\RІfҲ0m KTFRx‡vfPw}60he Wn IJaE1Klp*6?K@ݷ4'Bt )DNOnvBrPxizI WEoq3_;edx旒3Yj^NVvޛ:Ra34鴅Ijͮ$M[WX{"7堂W;Ɓ`8X@+eBPbOk֪hKuhYWʦX[0X+u)\ؼ*˭AbRႋ78#~ H19r\jk_eheB[4LD9F(KYnuĽC燹Eu`m?ilpt_vT`L_ ewXAXq$ե>X*v=H ,HU5pXRW\]2SD#BXt)صr*3Gyc_/e]z^a_)A>)1MATi&*-ʋdٞ[< ׅѦ0 3^EIP21|\ Mבw2xܸm j~EcwKu8D \&<%.-2z4(F^ ^"ʽT@Rv!!m9~g;n-YQq+ U:ז&ZY#T;1KE3ZOoGیO,C~~;_^o4D'LJ%ƈ@C1EH_^C߃hN܁i}.b_P5DEKϙA8DYMiZ̪ruX@CIZzKds X.Ȳ1峼m1L-n YE(k+P\Ns` g5* whYfa}Rռ9,  o^m|,CTc4B*۫?@ qC^~+pbA1X[ "98z6w u ט[39:{wB<,_>ŦNx8}3F{oL}:φʳ)| .HA/*%)[Q^gWjZ(Ⳙd6^9dEٶx ?8Pq~nYH54n!7Z/,%O J:vZkl]=einRVJ%^V5I, f)I! [  Y.aC"cuF%+ڥUi4NDcsPG{9*YAv9p"` ~3)$L~tB֒kno0缩-Ear =t Ҹgh n g 2:*Urb#IG'r ,b_;JSP"#PET`5ⸯ)2,/cYc/L3h@P _r3z>5b]XXW֢ڣ`g#RF@Xp ԡanԘ!U@b--Ӧ̀A򈣹c0ѷ@p9WBAF!k)"Få۟rK.K$jŀvVJ#] n"3sD*̠74Ns) 蔭SWd$o <Կ vJn{1Er_Ob 2vCcp{V".yb_[`j0ૂ9fOӦ7h+ǔ{Lr dlu˵>l|&<1;Sa2`+54qBn|XmVë;QjsX @LSVDolJ5}a\=x͐x?.ގa.ʍ^fIR-E* gf`uD0B` ."Oz(K֭P#$雄R.+W>e7]-O-*PY)36\(\J:=(sr*"3p."rTw)6`F1r /Oirso=ATډ)wOhP_ aevPN`՛ٍXچÑ S^, i@j ;ucgDV ,3 Qp=Owq`,s$.42? G"vƍRryʖS]$DWQ0ȞA`Bn{z$Xza[Ь), L{q XE/3F2c ^'g_$շL(fjw nf)lD b#~e}U lgdm2W Eh\ybB[VD.KeoK(X ̝)/hb6Xskx_1Uu&4TbXUwtx&\Lr o9 jɄ"zk j2 4AAZr鵹!#'S08mM׉)ŵUǡ!)nO1-n\5(ܟTG>TZ\czTv 0@W1 @0mRvRtdJܼR@F2"54BA6(gLkBiNfRQݼ*0<,805 g>=2R/m/5Ev7;"79n 32 %5Щ3Qƻ ȿ "WյGU QSN-·.{ʞm.WjN'Ԍ,(ڰ`Q%,.@|B O[igOx,(cQs*8!A@!Z\"ɲd vvM(hM#$=Stϑ׷8cZvF#SOLِb!: U|P*VZb֡O+SK/cPx r {/"ٽc30a,KTBf{|Ӵ3Cee\[a0ivQ0PZl3\ҳFc Pg VJ.`Uyq=xu+46\h+ m{]xϰf@>#v㰖)^V.1I퀘 [XٖuZ)`&l{٪9kGA(Uut@]T+y_*\p=fZS*X~p܅m9m* u3oԷ+m!Ig7L_buRXj}Pϸ's7 b ObK#~b-(b\sLD, dҏtfR/;ui%^qb to!PggkXAScNC}ojHb1:fKF qN?.e? qPi|v" &bKq tf"0b]>#V.QpswMcz,@[~b~Q骸U&6 [!+/}azHe2f-K8q1N֪UNSe.,7pDh>z%w497a*Ulmh"sb k75{bP]Q'Ee5wO+uUDwfljE0[w!,чɘY+[؊A}/~]hj?eAgQ<35V' ;o/,lEe. Q6pY2 X 7*S;.+־ɚAՌO.YV\3^<#;(F奱O~Q򧐝vX׳*1v0# M)FhFfDfY~߷NGi'AKq 8Ɛl}V;B&񕯍"D(Ͳ|BEN އ/t$e[CvdCL MYmƎ.TWp =xүew@c%h̨UJ5@Ҧ)pneYJ0P-"aq`7oi,!bZ+q( y9Y̻q8R e8I46eY"[RsHhز4A…o^p^7ܢrg2ݟ\;.ị% l%B`QyG\F[[\% Ơ ^8DUzUl*D5'1EW y;p56b( :7v~(MmSVn`:VB+l"o-;̸ՋL:D, fw~rF#: ߴbΘ%&ILdJq \4m.qv*ٵcDW,3,ᭅFBh@f y7Vr1-qU@!yWn-ET%hY6S2ĭR(Kl.8n4 'l#ԸF.c>cVhj#( 9v>nS(ޮ+ L>B,6:Uj,LS^@fP֕ y,he*5dȇvQbr#SAu0Z{̿ĭLV(6/zeо%r8r4#-%Rsi̳<_/CY2 >ks28{K"\1l^Ɲ&b|i!X\H`j+,B >a* l׻.pJr@-¥Uo-SXR7[d3b5CXams2}43اDF2𜟨KwEƍ/Z1Nd2n'޻NTd|Mx)?fm][~ɗv% Hߒ Ar‡1iмX4X&ʓA~.Z.GI^v|BUɘ_4Kڲ,!A;( (`Sd+GuWtq rZSW5UCMRPXL1m8|@g8̡tlm,]ʪe.4M1}v2rITĭ9~PH߆qdhFܙ7M@yUanEE1lZZ0Pq@uK^W gWA1gx-S%n}Y" "3;'0h[Co-("@}b_mANvNo࿹_wCINvGL슕h?/v|~ S~?a-XҲ+?0TZFfN/E?r1Jⱏ*{ؽ1.U.0s*xw|ᘤ$~I&]C=K0]'ܴ 9}x2i4Xd<&Ƞ6)|d3c .&N{\UԶ6]V aшPA]&ͭZsSg򷃛2*M%^M&u 7bV@/rQMfDQÇV1q8"Emw+_{&$J+;@4gO̲ ˳߁>D/ &Z;GVV^m)|R5H&6=`~ѨnYdzR`M".Eb]R}EBoo`Z&Jx ߙfj5=E" | !Y3&p ι"$g;˪$D4,5M]HJ&X`6,FTE ]+CYV]7Y]a .lͱE 4#1b3 h],tby bpX%%su[f Qnh&Q|D \HoA;`4؇!7AnKa3guBpL(o}K'Wq F \PK$̬qIN},?07)-iܳq5 m2Y (#k|gXR'?#QBo Հ!m}@.˚Arr%-]Y<ȋz&L&{[ÿ2zLc : 3-:4/}iwPch#|Vh|ƹ5rGwmf:w2RL+QqnY4شuD Vv Wj1򺶧kAR+egb*ཏK÷7@4%1M]%T%VX@$l{fvsօ ^W9~V{%S$<"; #6_=΄w}RAbV*bGSR\c4;Lf%DqKswᘀKsMF;BGt뗣 2*qVfh6_lr+$GDwv_'<{)cy9qpV\Uj=ʙlRZA"Φs_;#Hbe&!%> Pԡ!4xҔ”_DTÚnT E]7W%"휆Tv.ͿE€8)e*]{FexĶedTƝFH[Lbv @tTC|Z\pJaAVjZ;cT*)n_!%ў26Θow&f,o `,Z8+ g S78n+$.L/"k}{ Jah*Q~q7|ef+ł1Ʉ2[$c,eAiZhU}$s,G/ TYj"AbweCB̓=ux]Cl&l|4ZrPX45ah  y5`=;9e 4A ئ`yk&XQc C5M0ԳA!o*!0e68GLb` –/(\U˥%b'f bVDI>*)|2C5q!/4=[LH6%i!abEVjU2D~X/UQz>Pܾs6*bes XF ኹJ>lb8鋯A:'"xS!MT%(WB {DAn7oy\GGZ!d}Bh %A*(QG{j:d n -,$f [Bqm)"Lh UP5X[. ~+ 3׮ oaߕhTL,E"c@U]h,נcKpro2t[&y3gzK}F^$mUj1}#wcU1˿1Ífo'VdzIH[tL)ipN9Z*dآiZeQxã'fgyO] jRq To(Xٖ`2)⩑1cx< ٘z0A H򙋖g*C_A,(7!@0@[0I&уTVtNnWN ٘,.'m_*un֠q-%j6f)R ^{K+UF6T/q>6QVeUq3-D%VW[weoUM7ž#f@UZ 5(/$ei+loqi Ւ֮i5J;a3VŸW*[ZUPH8&;$4%a|lq@&oD8@oo/.R.^,?WIBgeЗ< 򦒺NT=2c!ڲ@?XcK xaV]> Lb}SjI4q9LRan}(:Ȍdy1Q0)뙈c7yn*FQ[``mf5{ &hes3=j]RYwjR)4QT*WiVhSl9bʁXj! fkLJ0;wKnT,hyBk>heWK)7=<Wjp*9 eXj7r|aPzv5vq{tS<@*!E2P ^pA6QIGgYvHKxgf!nw+LDVdWzdw ֗=HK0W^ yYww P1߷UKGmoiYNe-=n9sEJxǖ`97'NG EU8ݙƕe C 1J-pDIh%Z x?'a97}O64@tLR|G&theԔ B("d&a.Hee.q~h [0>FV/x -mt@4Z)dEY[fc?2LSASM )6ALU#$sNPZx9qnŸ4#c 4@wt0_JؓU;18#[ SFVXcyNM;*)*̷KGvA "0Kҭ,J"xӏ(jaYŘ7+\ ɔLQa2ih ;TstTD丘 Gf@{Љ?r zVفQ9n_׆v)wڋXaS|۽],q|E0!:RS= Zd/89^+kb uDWl)v8 Af{4(Yyn̰䯍{ {Z6DkRQ@  C^&jD!6q~ _@zH|FZ ՗0Qq{I|"Pz-AC6L-D)4spq`b0^c Kv,(U|EAnp6xށ\.c ^#(1TeLO%bR >JS 0eAH6ʄiWQ4;eTw}xD7 3;'%s~Ҟhܫx};&2}יnnљP+, qe)O0C men6Zl çDRT2|nʎg~ s~`/QUa_{Nߘ3 ADD] 5w `N AV(Ķi5NۻBO'~mt1(\BPM7uF!md ,rlآ^WF'v52PZ܈~'0ZV6P3,K">6[?b/s;vr^QK ZU;xT^LKg,n4/Ҋ(I9 V wC֠*Zp #O5zn@[`)w*K5͙nBK0k9̍5ey.~>b zqZC|Oٖg[3h |3n|Jpnr>ʝ?+*7VPLMb[Qݍ2,e ^ 7:$Di-I:{ڢRS`ʭݞd?]U/ Y8G+}٪Ke ɮPGI"ɭ `4Ɇn8`wlH3% l=V]$0B#N_c/aDĠS4J3z`WeCEwTb9|o1E/bw"v=q7:i.CCheEŰ('sMr֮4"`d{ogԣj7b kR@b/u0(f&ں7ĺ3wQ4y%,4_I[MKS#' K;#;a(:ebJs~WCIxVa]O7o8 Id +/۰'`nMO1I\> 79{Nu7@IPttn,4qW@UZ" v@{>c)u|MȽWI [N"#V>"AKS!vfzK8Cؗɦ[xBRaa5ŹLs`˖!PÝQK'AwCݧs&j)[Y}ٖ2O1jA%:*eKP^}sƎ* + =Rh(}"!>l Zw>e#Er+,Os|^RF A/-=$g,ݡ~1l40Bd)m'Aߚ1J,.kL>E' c~o o0\d{_$טd'\N f@U@{$X 8{'5?hcn5чJ>e/D{6U;fW9XG}[!q13a@,6W3whdy!fQiw*XEx_XfM A`̢\Y,qzc,}{&vndv˫ۂTļbŃ._E˗J2~^b8e203E@EA@.Y'&_]i< qy|a8z#6HRŜc#4/xPJyy7`1t=UCkaϸZpfDpG?A2$h(A5v67 NUocEUy{m%Mȗg0^<%"Ҹķ0UhUe;ZqqF$n}s9J(tV(a9\;I 7p:1vkYFmf:+w)N٥v/V+Lʿ3ATo&>IH&f誶*\sY;k[Yг1"& `Y{pK|EWe;%V4Z*Tۇ1b/"pA AKja q͌.j9U1[BG8#,d- sZLpt`oiU> )&Y9!.,RwRYPXC"FXlxln9۩3Y< je,e+6"v]۸6V>p#q7M|Z& M'i4xѭExq1PѵʉQ6hN&OeӦA"hd0ea1 mҎZk %j=Wt RR? G"b*Km~hW1/e9|sNnOZy UQV8_ʃQ['y$1,A98`rUX~܍@A,AAsYVjߘ7.i\L˩+e"HBhQh*{֫{/Yj*SM!dQzc:0ˌ9`~^ 56e&HVaX*uor;M*, hYi̻*0^a#ܫDފN: 8!x+k Xc*8>S0{\ Zô6.XP. B`sCZ?(ca K0K 1:ZE[.1,^;&:x*2{%; robTohV+g>zCNbmeawU+K0b8|=g*d4=ĨTRG~bj*) oAi0\EK 6"Tþ"l 4- vN>LA*{%ADXPDwao0Y}r0GȏZfw?Mܰ.iw.( S& 9UPo.sٜKo/><$UFx%071>F6KHq Dz\pC厭w% .*%`x8nұ,݌tTBext.rE.1vS UdA z4\k*LA.h{?IGDt)4XnBlĺvg},UܼKn̽^tgLnxJ9^3l"$aȁ LM/h;ʦz+%l5 ۫( ӵ8 z[.1uW8^ZoKswXKLb/ q"D= xD\b^}VWYL+dV̦h /p/,BDwTzo{!՝o苓f#kf࠱>ABl](ɨ' CfjhYi5aB A/1q )E(o2?Ɗ`{>6"Vdlt֮*x:Q`6dіZĿDW3z]#`4q*O䕝:i@Pr4xw-^+\9yA̴Y9&܉t +U_XPhq J dœ[_:Lo|!գ)kO4/2z0?!wO8o [>(jbT7/GcdGEc Md75!v BF<1,!*"3LtJK%NzBu OYG1bH{Kpeo%o a ʼney06&Lp5 hP^cXU{?1qLeÊ#}0[͑XWT<#+%K\SH0_I$UMҷAt#5<߆t >J=%SG#A>Jt*#m/D0O ހ~п ,W_P#H`.%-ۿL _+%7/*dZgYA~N|,H+3ƩO7~na0aWZZӱ>.6w@ TVm }BGDx%)dV4&0 f,4Khulpb\ӱ 3*Q0iUO([FO;NIED BII0_r1%l%o1v"09.!pkj4XRXpѝ|+6prŘn] n^R# U<!#(8Hiem - [N`J.T҉S" ROhk %8 u >)geQx`.q,qZ"i/e0>UqNJ\x @+rհnahG7yB!(D(̳-X'4f9[6;YP̦t35<]*%[ɇ]@nOD6#Nҽ^0yE^oh0`e;&-@yd(tx)1p'`R^E-5{Ga[_-9TեxL+m8ipV\rXqxE.ձwNupܶ9ycu)فR9:ҨMވj1Yj*!u]$\-l /£y\1i撬=Ls>Qiw`fT0dШimiX&e8TUv"( Eȯ#cpN,z0n2ZwYZP*A oga`@ Q/i -@蝪FZDM©_0 :\ΦuM\ E6V8ք GB@l|ah+Ȱ*Q'lE^fop] sYsnarX" CR%8h 䔥neIp3F0?0 hyv!^fji4eNK[x8Gj f%af/?c/ZK mW?K9A]!fvq-{h4(Q @+ZG嗟v\*,fEl^&8q[LP"rlj4 XZ;B"US l>).&. \P{)pfx2>/¬r/xx/F%Q_L|?!Fc|U_ n](N|B#P86Y蛁#agAEA18A)QxJGr.0T3W*̣]땊)*W IV]w"]Y .VS.9yT(հe3[ķc wTQ!|Nڌ\ZKxE :'v"ۊkUE3F\ g'uk,Q{45JᎾp*4J7rCe./5.a–-OlNF#+Ǹ*Ih+4{ 1%zhS<˛--,[9=S1q12˷`Hsc0S\ U}Y>X.Q)(7+5)Jw3eRkAv`s[@8weg\@5 -L@ o /1pV{Vrhde &Z b{.uu(Ec 72ؖdHg&4S-Ūyfd܊hhrܸw !ouZюoU2;`ٕX+rJRZ=Մُh6\@vąMψ:C0qIP"X9 5~.YT#DS_4\ :|8"OEs; Z*ٰ(G6gBPKߐ|{FdP3JI^ OxfeMܮG@oQ?vnR (cH ؐXm@~@Ǡ¶!EL7=VPUwx `/~1ZsL+F^* (t$SDKXwQ!aPM zŗvpj%=!h8%2FfzEiYBzO &bt hUñ#\+*d/+?nPap!N@F.ɖ{ a(%Ǚ B\b&t}gii[lG&6h<D;~.LӔ|dQ,;X4^kQl̉@5sXv0\#c!(mjYJB<76ŵ1U|. ZKffx3HD9) Icc.#H1e) ֡ܬ$]|O!x3r6c.m&88Hܗ+Dj@о&{0EQJiT8E QM/&g[oFO.[(jX$w$ݰ9:XMҸ!n%U-A@ ƒ6@~ |1H06T^ҎKGh ʦx~ݡ(]Z-Vbfod0'ZWlsC*4)8ahP#I%D\m=4 +>VM'ZHUFKwy](BQk - .2ϔT axUvz.YWX9ʨsacnC@385)_#ꇡNB0]Aġ,=&40 `'qolø ~+ R-]Q*OG4)!⢓B`= JwSU}پ,Xbcn\Me7'VL)bōm!>,ߊ_TA99P)Uce\STF=KpA FB,Xk[.qfgҟqݸjj: >b2m& [;z,0a;b D?3xhX7bʗ%p4{;#._15߷.T;oQq"'kaP^HװE#]F]V=t[)l=%e 3qnz/4; Uh JtFĺS[fV*,XF3Z@Rk4!ayr?˨9.ha a Jހb7<_اH ,uQ2y ;֭C\wz!106,F{y!ώP7D*w+bzIrOܵqK}6dDLO %,Sz')a SK2+%Ĥ7 *%5AЇ k EP8hdR[8-5Ƃ#d:dإJ卛{:[s{O":(d+ R]d] %Up7(EGs]#dǁ%7B›Hdp/w_ kjnY N1򂶷xH׶0 ɿy.W^y px{>!֤mmzT.wuM©!r xw^ݒKUT.5V0Ʌ aq w%Fyfj 7mK Kt'3UL.5,ɿ~mbĜMͳNp=1+f5Chbw\LȆ%$RRM#..9R炇?E!Db(;ɛٹ+x~ѱ&f#׉IND40JD[|/ /N V5T>%4k&]YcnR\,2p+QcK2<nW,̡RȬI6ylu$ |DmfK)-МSeA_æi;?iq&Vjterxc]q,YP\K`'Ld"&l~N +9uCaRmލR&oFpTFW١Z`]۟$uen"e~MYu}@{PmB\:B5( SDgR..)soc`"fy)^P!P:f3%`^J1jwHQ@*a _snpl>eCT S+'{.V U(1PXl@2AZ-|9yiW #O %w3k6afjJ;cM0yJ>FlQAPVS-賠86ja@$Z7eKf:?!k * xB cs̽UJ%+d|M,@ 8{scmÈW-65 KufrԸ K"(!^y?FeW@`lf~zYSg[T3f7@nez]C.0@]r,vX*w2 fj+tUC1^x{Ǹb;OB qG,ޣDEzj-`&lwءy ?gAĴ Cp゠#l 7g1{XU0.m7;0U\.RβUU0 [[Fp\"9@QqAlLveL兘-a+X ~O$Kdǖ:n!WhL؈-֏ܻ/\qR͌ÌZ8}I-jƘ`eK07!% /UɚnT",o(p~P-г&.~cJ#"@&_, ̂°ަe FT 9L o2p 2P+d`hg{vo_1-~cO1TOw K,L栂ޕ&D@u.٬ƊU.}ȚV4dU[pJ|ҖU dX¨̧Yȷ-UhDvѳaR0Y%obQT^pGȈ-K(Jdv -` ûw+D^ NϕR!M_IWGRЂ{ M%jNkFR[;G3 PwZ +/aEu>E#dyVf xXov7$%)ڹG)0zj#AjY mxFū D.2#"vp/p6=s(ܮQ悆X`m7XJȇgq`Ӄmka ̶M)RB`[ &-%kTӪ10q6 0z+#+f#A|$o%C?؏TWLXx؎TY6|Ԫa0@HH0Td ZVeArQ|m"4 >me,5; +DB(lR[̯$ P )BCD\`Mwa97b(&3h[tԁeQx(\$b#Bs 095BEуnWS8)|D=tЕPKh]-MXP2f#Rp:V's0vx<&=uiو# mm  s7M16` KdV(`ef<^ҸL[\"]1ޠ|0<^UycG$9?bˈXrbjhx @RsWKޭ6ЃW,pWf|j KU;\Y^a! M(.Xc*86 er+U'F_<]=q\30C Ҍ9.,Bs 2R͌J4 ǵHÃFYPGÌ3^̗`z3n l I4m̃v7Ohdr5* E& 5`_Mie3%hɉp1Z(k@*E'^<+uɉ]pCL[Y%TlDUt ;V']kp0]& \D(:&iu瘿Hmy/%^& ei-V,))> Z?e[4!ݓb)" W{+eӕ5y2,w,W9zK/B{f­|6 F&p+z{P鵗Rl<3{z*Ux+qa|"ysBu@zYD,9^K5K}P-艔K>f躋y/#2Gdqn` ^ )Kaǔ) \WB-90 ys2[Lfc|H*̭@IK95!t'4L2EM!21 kj92 @L̕ͅv0ӄ11|UpQ79En`1,g'yx (K k!0ґ:ROҞ{Ѐ0md=jEdۮ1 B%j Utn]^cmԤL5,‹cl5Z muzZ wK7uX 1mBO+k0q6L7V` sNa=HC:a4BÁCݿeͿ)y-4F@ H9Y,ړ!|  ,ض\j`(Ja}NNQ t,@q]EBPF.ES-ҡFF4{1-GSIjfuQz|3#3j.Fc8z1hGst옩(.UU 3xc v%,&UxC +B6=ܾOd802›KnnAo}XgF͢cϽ/N?1R>-+u^ ȍxUnC`UQvCw;_pT-0|~ 85[r>V7Jm{>(Ÿ%DSfŨ~ Dq$@ ˂pG8eU&6 xcbC6Y%%%0p!mh+G@a-P2-=ڵ+Mvek,H!*gy3ʀ2r% 3^B6(wP= 4)G4TZEH3V<[A@#!@>)vxa'/cmJ(Pa8^c7}" ʯ+9[/P\@@#PV]QmObC)`ܡ'}PŏiQ'6;h4kY%̳1"![18eq`áYi.D>yFg.Z?aIu`}B_yeVA 7UKA9ؠΎuN.a! *iAM-*F LiĬvܵ~vm>NH`KeSFY3B*cN2F#sw˖䬹AeYZ R\KX{׬v$.k ʿ3Ef֦'W=0T_Kck^n-ZB0\RJ ReA%u5P ɫ ߃ kɹ_l m p,edgS{m{s ,hzki͡y-7͑ m+=)xSp{gG`XJcU9fhbL@4. ng\fgţl~&,&6E-n,&B LejQ Fy4TZ6_RR`t^5 4i棣}9鰘"O,f?LYA˜y]) ]+0gQBI FqU/]ыx0zL)%P3Ig̼.) 12W%\j~JٚK mZal٧a @jWC/71 L+eU,<L5dR,69ơ+Zn? rȌ.+)2CAR#;25< @;=1O67:Y"~5I%]8UċBk0ǥv&Wj8PXJ,68HY;U~SGJ~dꩤyEL֒T/yd ŰǴh18\Rf$Ӝ~V 4l֌*6é<}"u(c xavf ۹:%% %؏sf1#1!oZ_8\`T֮Xg&lC`ULP9MLFt}lk\@+Mʈ1x(K3b-&Ҕj6@`!QV.Xl4>Ax啇6URLD6r7KkԲM/u TDA/k6@Q5QY a*6Xg +nԠ">pK3Q.8qMl.*/G0O`jyߋF[W.<\Tqh8MHY#7]ŀi4"a;qG Nw;%F6FXSWuf1_ht+X9IzJNjS`H+meyb7 1^I_ Zns/ ;-2 Jlo.30.w=_5R(Wph袹L:/1_k6h-# &4@s?PF0R(s'"8NLq5TSHMʱV ᴄ Zv%8jxQ*E,(9EjhةH m7x'.L@lpZ`\Qa,Y,65k6g^ˤe`K>'.Vrfq LJ М6isV*}0Q;Eo)W̒jзm wJ-0%w?A tj7S$q^if.LF  Ma!0ۺOИtèXZ$)g v}m? *>e\Ee>3V>PU߂)v0]ַ0#L9WٌTBq[m_|{㢚Jȵ T[e 8VܬjR^ TF4 hdlcdp b[j^^%L7pzfQ>udAc~tPc3TA¯n{Q2q~ 9VK:T@aL/pL0,L:eo!* Jh.jR󽌤n@>%%%TA.23<Ŏ Vn?fHm1dSLüe^Ⱥ+p2(cظ4myaaZh^:CI䀛unr4$6֌;FXuBzc?3FǵyHr=6?*=Vd'## =1 JeB[oJ(Pji&ܥ[dFTyDP!:S:[Hp@t!?drߕJnʌÍ1=Qh'Q>VXj":ˇTXd@HfX Q7+!~:'J1Fd̞` )hӥ%* )fO  ,%j\-~Fzad3/KYEky'.˦4%\/.<U*4)enlX..>hip&Y@ɔ+TUƌqTńܭm xauyn8ͽ՚fƽRiO7cN <N\O*R\W剪6S^;p+G33FEb{YXU|ehG<" v(T¥1J]!w"81FjUN#-;́?U 2Ytw&#)` $I.@4\JhʔpVXN&Ռ!~ C MC}+
Linux 4gvps.4gvps.com 3.10.0-1127.18.2.vz7.163.46 #1 SMP Fri Nov 20 21:47:55 MSK 2020 x86_64
  SOFT : Apache PHP : 7.4.33
/opt/alt/python35/lib64/python3.5/__pycache__/
38.135.39.45

 
[ NAME ] [ SIZE ] [ PERM ] [ DATE ] [ ACT ]
+FILE +DIR
__future__.cpython-35.opt-1.pyc 4.213 KB -rw-r--r-- 2024-05-31 13:50 R E G D
__future__.cpython-35.opt-2.pyc 2.281 KB -rw-r--r-- 2024-05-31 13:50 R E G D
__future__.cpython-35.pyc 4.213 KB -rw-r--r-- 2024-05-31 13:50 R E G D
__phello__.foo.cpython-35.opt-1.pyc 0.131 KB -rw-r--r-- 2024-05-31 13:50 R E G D
__phello__.foo.cpython-35.opt-2.pyc 0.131 KB -rw-r--r-- 2024-05-31 13:50 R E G D
__phello__.foo.cpython-35.pyc 0.131 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_bootlocale.cpython-35.opt-1.pyc 0.989 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_bootlocale.cpython-35.opt-2.pyc 0.768 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_bootlocale.cpython-35.pyc 1.02 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_collections_abc.cpython-35.opt-1.pyc 29.117 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_collections_abc.cpython-35.opt-2.pyc 24.558 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_collections_abc.cpython-35.pyc 29.117 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_compat_pickle.cpython-35.opt-1.pyc 6.487 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_compat_pickle.cpython-35.opt-2.pyc 6.487 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_compat_pickle.cpython-35.pyc 6.56 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_compression.cpython-35.opt-1.pyc 4.345 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_compression.cpython-35.opt-2.pyc 4.128 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_compression.cpython-35.pyc 4.345 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_dummy_thread.cpython-35.opt-1.pyc 4.942 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_dummy_thread.cpython-35.opt-2.pyc 2.782 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_dummy_thread.cpython-35.pyc 4.942 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_markupbase.cpython-35.opt-1.pyc 8.488 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_markupbase.cpython-35.opt-2.pyc 8.113 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_markupbase.cpython-35.pyc 8.671 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_osx_support.cpython-35.opt-1.pyc 10.242 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_osx_support.cpython-35.opt-2.pyc 7.849 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_osx_support.cpython-35.pyc 10.242 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_pydecimal.cpython-35.opt-1.pyc 168.067 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_pydecimal.cpython-35.opt-2.pyc 88.927 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_pydecimal.cpython-35.pyc 168.067 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_pyio.cpython-35.opt-1.pyc 74.202 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_pyio.cpython-35.opt-2.pyc 52.301 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_pyio.cpython-35.pyc 74.228 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_sitebuiltins.cpython-35.opt-1.pyc 3.583 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_sitebuiltins.cpython-35.opt-2.pyc 3.065 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_sitebuiltins.cpython-35.pyc 3.583 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_strptime.cpython-35.opt-1.pyc 15.423 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_strptime.cpython-35.opt-2.pyc 11.979 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_strptime.cpython-35.pyc 15.423 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_sysconfigdata.cpython-35.opt-1.pyc 21.233 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_sysconfigdata.cpython-35.opt-2.pyc 21.233 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_sysconfigdata.cpython-35.pyc 21.233 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_threading_local.cpython-35.opt-1.pyc 6.737 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_threading_local.cpython-35.opt-2.pyc 3.305 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_threading_local.cpython-35.pyc 6.737 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_weakrefset.cpython-35.opt-1.pyc 8.224 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_weakrefset.cpython-35.opt-2.pyc 8.224 KB -rw-r--r-- 2024-05-31 13:50 R E G D
_weakrefset.cpython-35.pyc 8.224 KB -rw-r--r-- 2024-05-31 13:50 R E G D
abc.cpython-35.opt-1.pyc 7.632 KB -rw-r--r-- 2024-05-31 13:50 R E G D
abc.cpython-35.opt-2.pyc 4.335 KB -rw-r--r-- 2024-05-31 13:50 R E G D
abc.cpython-35.pyc 7.681 KB -rw-r--r-- 2024-05-31 13:50 R E G D
aifc.cpython-35.opt-1.pyc 27.153 KB -rw-r--r-- 2024-05-31 13:50 R E G D
aifc.cpython-35.opt-2.pyc 22.06 KB -rw-r--r-- 2024-05-31 13:50 R E G D
aifc.cpython-35.pyc 27.153 KB -rw-r--r-- 2024-05-31 13:50 R E G D
antigravity.cpython-35.opt-1.pyc 0.828 KB -rw-r--r-- 2024-05-31 13:50 R E G D
antigravity.cpython-35.opt-2.pyc 0.688 KB -rw-r--r-- 2024-05-31 13:50 R E G D
antigravity.cpython-35.pyc 0.828 KB -rw-r--r-- 2024-05-31 13:50 R E G D
argparse.cpython-35.opt-1.pyc 63.842 KB -rw-r--r-- 2024-05-31 13:50 R E G D
argparse.cpython-35.opt-2.pyc 54.792 KB -rw-r--r-- 2024-05-31 13:50 R E G D
argparse.cpython-35.pyc 63.997 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ast.cpython-35.opt-1.pyc 12.007 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ast.cpython-35.opt-2.pyc 6.547 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ast.cpython-35.pyc 12.007 KB -rw-r--r-- 2024-05-31 13:50 R E G D
asynchat.cpython-35.opt-1.pyc 8.281 KB -rw-r--r-- 2024-05-31 13:50 R E G D
asynchat.cpython-35.opt-2.pyc 6.934 KB -rw-r--r-- 2024-05-31 13:50 R E G D
asynchat.cpython-35.pyc 8.281 KB -rw-r--r-- 2024-05-31 13:50 R E G D
asyncore.cpython-35.opt-1.pyc 16.771 KB -rw-r--r-- 2024-05-31 13:50 R E G D
asyncore.cpython-35.opt-2.pyc 15.594 KB -rw-r--r-- 2024-05-31 13:50 R E G D
asyncore.cpython-35.pyc 16.771 KB -rw-r--r-- 2024-05-31 13:50 R E G D
base64.cpython-35.opt-1.pyc 17.813 KB -rw-r--r-- 2024-05-31 13:50 R E G D
base64.cpython-35.opt-2.pyc 12.344 KB -rw-r--r-- 2024-05-31 13:50 R E G D
base64.cpython-35.pyc 18.006 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bdb.cpython-35.opt-1.pyc 18.124 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bdb.cpython-35.opt-2.pyc 16.431 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bdb.cpython-35.pyc 18.124 KB -rw-r--r-- 2024-05-31 13:50 R E G D
binhex.cpython-35.opt-1.pyc 13.112 KB -rw-r--r-- 2024-05-31 13:50 R E G D
binhex.cpython-35.opt-2.pyc 12.582 KB -rw-r--r-- 2024-05-31 13:50 R E G D
binhex.cpython-35.pyc 13.112 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bisect.cpython-35.opt-1.pyc 2.768 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bisect.cpython-35.opt-2.pyc 1.5 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bisect.cpython-35.pyc 2.768 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bz2.cpython-35.opt-1.pyc 11.512 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bz2.cpython-35.opt-2.pyc 6.595 KB -rw-r--r-- 2024-05-31 13:50 R E G D
bz2.cpython-35.pyc 11.512 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cProfile.cpython-35.opt-1.pyc 4.498 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cProfile.cpython-35.opt-2.pyc 4.035 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cProfile.cpython-35.pyc 4.498 KB -rw-r--r-- 2024-05-31 13:50 R E G D
calendar.cpython-35.opt-1.pyc 27.001 KB -rw-r--r-- 2024-05-31 13:50 R E G D
calendar.cpython-35.opt-2.pyc 22.568 KB -rw-r--r-- 2024-05-31 13:50 R E G D
calendar.cpython-35.pyc 27.001 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cgi.cpython-35.opt-1.pyc 29.165 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cgi.cpython-35.opt-2.pyc 20.472 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cgi.cpython-35.pyc 29.165 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cgitb.cpython-35.opt-1.pyc 10.745 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cgitb.cpython-35.opt-2.pyc 9.18 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cgitb.cpython-35.pyc 10.745 KB -rw-r--r-- 2024-05-31 13:50 R E G D
chunk.cpython-35.opt-1.pyc 5.097 KB -rw-r--r-- 2024-05-31 13:50 R E G D
chunk.cpython-35.opt-2.pyc 2.999 KB -rw-r--r-- 2024-05-31 13:50 R E G D
chunk.cpython-35.pyc 5.097 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cmd.cpython-35.opt-1.pyc 13.094 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cmd.cpython-35.opt-2.pyc 7.778 KB -rw-r--r-- 2024-05-31 13:50 R E G D
cmd.cpython-35.pyc 13.094 KB -rw-r--r-- 2024-05-31 13:50 R E G D
code.cpython-35.opt-1.pyc 9.596 KB -rw-r--r-- 2024-05-31 13:50 R E G D
code.cpython-35.opt-2.pyc 4.721 KB -rw-r--r-- 2024-05-31 13:50 R E G D
code.cpython-35.pyc 9.596 KB -rw-r--r-- 2024-05-31 13:50 R E G D
codecs.cpython-35.opt-1.pyc 34.476 KB -rw-r--r-- 2024-05-31 13:50 R E G D
codecs.cpython-35.opt-2.pyc 18.981 KB -rw-r--r-- 2024-05-31 13:50 R E G D
codecs.cpython-35.pyc 34.476 KB -rw-r--r-- 2024-05-31 13:50 R E G D
codeop.cpython-35.opt-1.pyc 6.303 KB -rw-r--r-- 2024-05-31 13:50 R E G D
codeop.cpython-35.opt-2.pyc 2.345 KB -rw-r--r-- 2024-05-31 13:50 R E G D
codeop.cpython-35.pyc 6.303 KB -rw-r--r-- 2024-05-31 13:50 R E G D
colorsys.cpython-35.opt-1.pyc 3.556 KB -rw-r--r-- 2024-05-31 13:50 R E G D
colorsys.cpython-35.opt-2.pyc 2.962 KB -rw-r--r-- 2024-05-31 13:50 R E G D
colorsys.cpython-35.pyc 3.556 KB -rw-r--r-- 2024-05-31 13:50 R E G D
compileall.cpython-35.opt-1.pyc 8.544 KB -rw-r--r-- 2024-05-31 13:50 R E G D
compileall.cpython-35.opt-2.pyc 6.454 KB -rw-r--r-- 2024-05-31 13:50 R E G D
compileall.cpython-35.pyc 8.544 KB -rw-r--r-- 2024-05-31 13:50 R E G D
configparser.cpython-35.opt-1.pyc 47.043 KB -rw-r--r-- 2024-05-31 13:50 R E G D
configparser.cpython-35.opt-2.pyc 32.676 KB -rw-r--r-- 2024-05-31 13:50 R E G D
configparser.cpython-35.pyc 47.043 KB -rw-r--r-- 2024-05-31 13:50 R E G D
contextlib.cpython-35.opt-1.pyc 10.696 KB -rw-r--r-- 2024-05-31 13:50 R E G D
contextlib.cpython-35.opt-2.pyc 7.574 KB -rw-r--r-- 2024-05-31 13:50 R E G D
contextlib.cpython-35.pyc 10.696 KB -rw-r--r-- 2024-05-31 13:50 R E G D
copy.cpython-35.opt-1.pyc 7.833 KB -rw-r--r-- 2024-05-31 13:50 R E G D
copy.cpython-35.opt-2.pyc 5.569 KB -rw-r--r-- 2024-05-31 13:50 R E G D
copy.cpython-35.pyc 7.917 KB -rw-r--r-- 2024-05-31 13:50 R E G D
copyreg.cpython-35.opt-1.pyc 4.405 KB -rw-r--r-- 2024-05-31 13:50 R E G D
copyreg.cpython-35.opt-2.pyc 3.618 KB -rw-r--r-- 2024-05-31 13:50 R E G D
copyreg.cpython-35.pyc 4.445 KB -rw-r--r-- 2024-05-31 13:50 R E G D
crypt.cpython-35.opt-1.pyc 2.371 KB -rw-r--r-- 2024-05-31 13:50 R E G D
crypt.cpython-35.opt-2.pyc 1.719 KB -rw-r--r-- 2024-05-31 13:50 R E G D
crypt.cpython-35.pyc 2.371 KB -rw-r--r-- 2024-05-31 13:50 R E G D
csv.cpython-35.opt-1.pyc 12.62 KB -rw-r--r-- 2024-05-31 13:50 R E G D
csv.cpython-35.opt-2.pyc 10.617 KB -rw-r--r-- 2024-05-31 13:50 R E G D
csv.cpython-35.pyc 12.62 KB -rw-r--r-- 2024-05-31 13:50 R E G D
datetime.cpython-35.opt-1.pyc 52.453 KB -rw-r--r-- 2024-05-31 13:50 R E G D
datetime.cpython-35.opt-2.pyc 44.167 KB -rw-r--r-- 2024-05-31 13:50 R E G D
datetime.cpython-35.pyc 54.129 KB -rw-r--r-- 2024-05-31 13:50 R E G D
decimal.cpython-35.opt-1.pyc 0.384 KB -rw-r--r-- 2024-05-31 13:50 R E G D
decimal.cpython-35.opt-2.pyc 0.384 KB -rw-r--r-- 2024-05-31 13:50 R E G D
decimal.cpython-35.pyc 0.384 KB -rw-r--r-- 2024-05-31 13:50 R E G D
difflib.cpython-35.opt-1.pyc 60.741 KB -rw-r--r-- 2024-05-31 13:50 R E G D
difflib.cpython-35.opt-2.pyc 26.974 KB -rw-r--r-- 2024-05-31 13:50 R E G D
difflib.cpython-35.pyc 60.788 KB -rw-r--r-- 2024-05-31 13:50 R E G D
dis.cpython-35.opt-1.pyc 14.438 KB -rw-r--r-- 2024-05-31 13:50 R E G D
dis.cpython-35.opt-2.pyc 10.975 KB -rw-r--r-- 2024-05-31 13:50 R E G D
dis.cpython-35.pyc 14.438 KB -rw-r--r-- 2024-05-31 13:50 R E G D
doctest.cpython-35.opt-1.pyc 77.602 KB -rw-r--r-- 2024-05-31 13:50 R E G D
doctest.cpython-35.opt-2.pyc 43.079 KB -rw-r--r-- 2024-05-31 13:50 R E G D
doctest.cpython-35.pyc 77.868 KB -rw-r--r-- 2024-05-31 13:50 R E G D
dummy_threading.cpython-35.opt-1.pyc 1.171 KB -rw-r--r-- 2024-05-31 13:50 R E G D
dummy_threading.cpython-35.opt-2.pyc 0.805 KB -rw-r--r-- 2024-05-31 13:50 R E G D
dummy_threading.cpython-35.pyc 1.171 KB -rw-r--r-- 2024-05-31 13:50 R E G D
enum.cpython-35.opt-1.pyc 16.179 KB -rw-r--r-- 2024-05-31 13:50 R E G D
enum.cpython-35.opt-2.pyc 12.554 KB -rw-r--r-- 2024-05-31 13:50 R E G D
enum.cpython-35.pyc 16.179 KB -rw-r--r-- 2024-05-31 13:50 R E G D
filecmp.cpython-35.opt-1.pyc 8.873 KB -rw-r--r-- 2024-05-31 13:50 R E G D
filecmp.cpython-35.opt-2.pyc 6.509 KB -rw-r--r-- 2024-05-31 13:50 R E G D
filecmp.cpython-35.pyc 8.873 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fileinput.cpython-35.opt-1.pyc 13.513 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fileinput.cpython-35.opt-2.pyc 8.1 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fileinput.cpython-35.pyc 13.513 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fnmatch.cpython-35.opt-1.pyc 3.058 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fnmatch.cpython-35.opt-2.pyc 1.895 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fnmatch.cpython-35.pyc 3.058 KB -rw-r--r-- 2024-05-31 13:50 R E G D
formatter.cpython-35.opt-1.pyc 18.37 KB -rw-r--r-- 2024-05-31 13:50 R E G D
formatter.cpython-35.opt-2.pyc 15.976 KB -rw-r--r-- 2024-05-31 13:50 R E G D
formatter.cpython-35.pyc 18.37 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fractions.cpython-35.opt-1.pyc 19.585 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fractions.cpython-35.opt-2.pyc 12.465 KB -rw-r--r-- 2024-05-31 13:50 R E G D
fractions.cpython-35.pyc 19.585 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ftplib.cpython-35.opt-1.pyc 29.49 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ftplib.cpython-35.opt-2.pyc 19.97 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ftplib.cpython-35.pyc 29.49 KB -rw-r--r-- 2024-05-31 13:50 R E G D
functools.cpython-35.opt-1.pyc 23.031 KB -rw-r--r-- 2024-05-31 13:50 R E G D
functools.cpython-35.opt-2.pyc 17.204 KB -rw-r--r-- 2024-05-31 13:50 R E G D
functools.cpython-35.pyc 23.031 KB -rw-r--r-- 2024-05-31 13:50 R E G D
genericpath.cpython-35.opt-1.pyc 3.84 KB -rw-r--r-- 2024-05-31 13:50 R E G D
genericpath.cpython-35.opt-2.pyc 2.868 KB -rw-r--r-- 2024-05-31 13:50 R E G D
genericpath.cpython-35.pyc 3.84 KB -rw-r--r-- 2024-05-31 13:50 R E G D
getopt.cpython-35.opt-1.pyc 6.502 KB -rw-r--r-- 2024-05-31 13:50 R E G D
getopt.cpython-35.opt-2.pyc 4.006 KB -rw-r--r-- 2024-05-31 13:50 R E G D
getopt.cpython-35.pyc 6.543 KB -rw-r--r-- 2024-05-31 13:50 R E G D
getpass.cpython-35.opt-1.pyc 4.396 KB -rw-r--r-- 2024-05-31 13:50 R E G D
getpass.cpython-35.opt-2.pyc 3.236 KB -rw-r--r-- 2024-05-31 13:50 R E G D
getpass.cpython-35.pyc 4.396 KB -rw-r--r-- 2024-05-31 13:50 R E G D
gettext.cpython-35.opt-1.pyc 15.307 KB -rw-r--r-- 2024-05-31 13:50 R E G D
gettext.cpython-35.opt-2.pyc 14.63 KB -rw-r--r-- 2024-05-31 13:50 R E G D
gettext.cpython-35.pyc 15.307 KB -rw-r--r-- 2024-05-31 13:50 R E G D
glob.cpython-35.opt-1.pyc 4.044 KB -rw-r--r-- 2024-05-31 13:50 R E G D
glob.cpython-35.opt-2.pyc 3.202 KB -rw-r--r-- 2024-05-31 13:50 R E G D
glob.cpython-35.pyc 4.104 KB -rw-r--r-- 2024-05-31 13:50 R E G D
gzip.cpython-35.opt-1.pyc 17.168 KB -rw-r--r-- 2024-05-31 13:50 R E G D
gzip.cpython-35.opt-2.pyc 13.445 KB -rw-r--r-- 2024-05-31 13:50 R E G D
gzip.cpython-35.pyc 17.168 KB -rw-r--r-- 2024-05-31 13:50 R E G D
hashlib.cpython-35.opt-1.pyc 6.129 KB -rw-r--r-- 2024-05-31 13:50 R E G D
hashlib.cpython-35.opt-2.pyc 5.611 KB -rw-r--r-- 2024-05-31 13:50 R E G D
hashlib.cpython-35.pyc 6.129 KB -rw-r--r-- 2024-05-31 13:50 R E G D
heapq.cpython-35.opt-1.pyc 14.689 KB -rw-r--r-- 2024-05-31 13:50 R E G D
heapq.cpython-35.opt-2.pyc 11.768 KB -rw-r--r-- 2024-05-31 13:50 R E G D
heapq.cpython-35.pyc 14.689 KB -rw-r--r-- 2024-05-31 13:50 R E G D
hmac.cpython-35.opt-1.pyc 5.011 KB -rw-r--r-- 2024-05-31 13:50 R E G D
hmac.cpython-35.opt-2.pyc 3.238 KB -rw-r--r-- 2024-05-31 13:50 R E G D
hmac.cpython-35.pyc 5.011 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imaplib.cpython-35.opt-1.pyc 41.32 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imaplib.cpython-35.opt-2.pyc 29.506 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imaplib.cpython-35.pyc 43.744 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imghdr.cpython-35.opt-1.pyc 4.393 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imghdr.cpython-35.opt-2.pyc 4.083 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imghdr.cpython-35.pyc 4.393 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imp.cpython-35.opt-1.pyc 10.229 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imp.cpython-35.opt-2.pyc 7.872 KB -rw-r--r-- 2024-05-31 13:50 R E G D
imp.cpython-35.pyc 10.229 KB -rw-r--r-- 2024-05-31 13:50 R E G D
inspect.cpython-35.opt-1.pyc 82.496 KB -rw-r--r-- 2024-05-31 13:50 R E G D
inspect.cpython-35.opt-2.pyc 58.284 KB -rw-r--r-- 2024-05-31 13:50 R E G D
inspect.cpython-35.pyc 82.838 KB -rw-r--r-- 2024-05-31 13:50 R E G D
io.cpython-35.opt-1.pyc 3.377 KB -rw-r--r-- 2024-05-31 13:50 R E G D
io.cpython-35.opt-2.pyc 1.921 KB -rw-r--r-- 2024-05-31 13:50 R E G D
io.cpython-35.pyc 3.377 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ipaddress.cpython-35.opt-1.pyc 65.011 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ipaddress.cpython-35.opt-2.pyc 40.001 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ipaddress.cpython-35.pyc 65.011 KB -rw-r--r-- 2024-05-31 13:50 R E G D
keyword.cpython-35.opt-1.pyc 1.895 KB -rw-r--r-- 2024-05-31 13:50 R E G D
keyword.cpython-35.opt-2.pyc 1.631 KB -rw-r--r-- 2024-05-31 13:50 R E G D
keyword.cpython-35.pyc 1.895 KB -rw-r--r-- 2024-05-31 13:50 R E G D
linecache.cpython-35.opt-1.pyc 3.981 KB -rw-r--r-- 2024-05-31 13:50 R E G D
linecache.cpython-35.opt-2.pyc 2.9 KB -rw-r--r-- 2024-05-31 13:50 R E G D
linecache.cpython-35.pyc 3.981 KB -rw-r--r-- 2024-05-31 13:50 R E G D
locale.cpython-35.opt-1.pyc 35.672 KB -rw-r--r-- 2024-05-31 13:50 R E G D
locale.cpython-35.opt-2.pyc 31.157 KB -rw-r--r-- 2024-05-31 13:50 R E G D
locale.cpython-35.pyc 35.672 KB -rw-r--r-- 2024-05-31 13:50 R E G D
lzma.cpython-35.opt-1.pyc 12.188 KB -rw-r--r-- 2024-05-31 13:50 R E G D
lzma.cpython-35.opt-2.pyc 6.167 KB -rw-r--r-- 2024-05-31 13:50 R E G D
lzma.cpython-35.pyc 12.188 KB -rw-r--r-- 2024-05-31 13:50 R E G D
macpath.cpython-35.opt-1.pyc 5.999 KB -rw-r--r-- 2024-05-31 13:50 R E G D
macpath.cpython-35.opt-2.pyc 4.759 KB -rw-r--r-- 2024-05-31 13:50 R E G D
macpath.cpython-35.pyc 5.999 KB -rw-r--r-- 2024-05-31 13:50 R E G D
macurl2path.cpython-35.opt-1.pyc 2.035 KB -rw-r--r-- 2024-05-31 13:50 R E G D
macurl2path.cpython-35.opt-2.pyc 1.662 KB -rw-r--r-- 2024-05-31 13:50 R E G D
macurl2path.cpython-35.pyc 2.035 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mailbox.cpython-35.opt-1.pyc 68.064 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mailbox.cpython-35.opt-2.pyc 59.087 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mailbox.cpython-35.pyc 68.161 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mailcap.cpython-35.opt-1.pyc 6.982 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mailcap.cpython-35.opt-2.pyc 5.498 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mailcap.cpython-35.pyc 6.982 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mimetypes.cpython-35.opt-1.pyc 16.257 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mimetypes.cpython-35.opt-2.pyc 10.396 KB -rw-r--r-- 2024-05-31 13:50 R E G D
mimetypes.cpython-35.pyc 16.257 KB -rw-r--r-- 2024-05-31 13:50 R E G D
modulefinder.cpython-35.opt-1.pyc 16.777 KB -rw-r--r-- 2024-05-31 13:50 R E G D
modulefinder.cpython-35.opt-2.pyc 15.954 KB -rw-r--r-- 2024-05-31 13:50 R E G D
modulefinder.cpython-35.pyc 16.854 KB -rw-r--r-- 2024-05-31 13:50 R E G D
netrc.cpython-35.opt-1.pyc 4.146 KB -rw-r--r-- 2024-05-31 13:50 R E G D
netrc.cpython-35.opt-2.pyc 3.91 KB -rw-r--r-- 2024-05-31 13:50 R E G D
netrc.cpython-35.pyc 4.146 KB -rw-r--r-- 2024-05-31 13:50 R E G D
nntplib.cpython-35.opt-1.pyc 35.231 KB -rw-r--r-- 2024-05-31 13:50 R E G D
nntplib.cpython-35.opt-2.pyc 22.971 KB -rw-r--r-- 2024-05-31 13:50 R E G D
nntplib.cpython-35.pyc 35.231 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ntpath.cpython-35.opt-1.pyc 14.467 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ntpath.cpython-35.opt-2.pyc 12.176 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ntpath.cpython-35.pyc 14.467 KB -rw-r--r-- 2024-05-31 13:50 R E G D
nturl2path.cpython-35.opt-1.pyc 1.655 KB -rw-r--r-- 2024-05-31 13:50 R E G D
nturl2path.cpython-35.opt-2.pyc 1.343 KB -rw-r--r-- 2024-05-31 13:50 R E G D
nturl2path.cpython-35.pyc 1.655 KB -rw-r--r-- 2024-05-31 13:50 R E G D
numbers.cpython-35.opt-1.pyc 12.37 KB -rw-r--r-- 2024-05-31 13:50 R E G D
numbers.cpython-35.opt-2.pyc 8.49 KB -rw-r--r-- 2024-05-31 13:50 R E G D
numbers.cpython-35.pyc 12.37 KB -rw-r--r-- 2024-05-31 13:50 R E G D
opcode.cpython-35.opt-1.pyc 5.568 KB -rw-r--r-- 2024-05-31 13:50 R E G D
opcode.cpython-35.opt-2.pyc 5.432 KB -rw-r--r-- 2024-05-31 13:50 R E G D
opcode.cpython-35.pyc 5.568 KB -rw-r--r-- 2024-05-31 13:50 R E G D
operator.cpython-35.opt-1.pyc 14.442 KB -rw-r--r-- 2024-05-31 13:50 R E G D
operator.cpython-35.opt-2.pyc 12.033 KB -rw-r--r-- 2024-05-31 13:50 R E G D
operator.cpython-35.pyc 14.442 KB -rw-r--r-- 2024-05-31 13:50 R E G D
optparse.cpython-35.opt-1.pyc 49.981 KB -rw-r--r-- 2024-05-31 13:50 R E G D
optparse.cpython-35.opt-2.pyc 37.893 KB -rw-r--r-- 2024-05-31 13:50 R E G D
optparse.cpython-35.pyc 50.057 KB -rw-r--r-- 2024-05-31 13:50 R E G D
os.cpython-35.opt-1.pyc 30.559 KB -rw-r--r-- 2024-05-31 13:50 R E G D
os.cpython-35.opt-2.pyc 19.309 KB -rw-r--r-- 2024-05-31 13:50 R E G D
os.cpython-35.pyc 30.559 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pathlib.cpython-35.opt-1.pyc 43.081 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pathlib.cpython-35.opt-2.pyc 36.843 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pathlib.cpython-35.pyc 43.081 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pdb.cpython-35.opt-1.pyc 48.162 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pdb.cpython-35.opt-2.pyc 34.511 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pdb.cpython-35.pyc 48.227 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pickle.cpython-35.opt-1.pyc 45.708 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pickle.cpython-35.opt-2.pyc 41.024 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pickle.cpython-35.pyc 45.851 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pickletools.cpython-35.opt-1.pyc 67.366 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pickletools.cpython-35.opt-2.pyc 58.831 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pickletools.cpython-35.pyc 68.425 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pipes.cpython-35.opt-1.pyc 8.16 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pipes.cpython-35.opt-2.pyc 5.351 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pipes.cpython-35.pyc 8.16 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pkgutil.cpython-35.opt-1.pyc 17.063 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pkgutil.cpython-35.opt-2.pyc 11.876 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pkgutil.cpython-35.pyc 17.063 KB -rw-r--r-- 2024-05-31 13:50 R E G D
platform.cpython-35.opt-1.pyc 29.372 KB -rw-r--r-- 2024-05-31 13:50 R E G D
platform.cpython-35.opt-2.pyc 20.339 KB -rw-r--r-- 2024-05-31 13:50 R E G D
platform.cpython-35.pyc 29.372 KB -rw-r--r-- 2024-05-31 13:50 R E G D
plistlib.cpython-35.opt-1.pyc 29.273 KB -rw-r--r-- 2024-05-31 13:50 R E G D
plistlib.cpython-35.opt-2.pyc 26.088 KB -rw-r--r-- 2024-05-31 13:50 R E G D
plistlib.cpython-35.pyc 29.354 KB -rw-r--r-- 2024-05-31 13:50 R E G D
poplib.cpython-35.opt-1.pyc 13.658 KB -rw-r--r-- 2024-05-31 13:50 R E G D
poplib.cpython-35.opt-2.pyc 8.837 KB -rw-r--r-- 2024-05-31 13:50 R E G D
poplib.cpython-35.pyc 13.658 KB -rw-r--r-- 2024-05-31 13:50 R E G D
posixpath.cpython-35.opt-1.pyc 10.893 KB -rw-r--r-- 2024-05-31 13:50 R E G D
posixpath.cpython-35.opt-2.pyc 9.21 KB -rw-r--r-- 2024-05-31 13:50 R E G D
posixpath.cpython-35.pyc 10.893 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pprint.cpython-35.opt-1.pyc 17.017 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pprint.cpython-35.opt-2.pyc 14.997 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pprint.cpython-35.pyc 17.069 KB -rw-r--r-- 2024-05-31 13:50 R E G D
profile.cpython-35.opt-1.pyc 14.483 KB -rw-r--r-- 2024-05-31 13:50 R E G D
profile.cpython-35.opt-2.pyc 11.565 KB -rw-r--r-- 2024-05-31 13:50 R E G D
profile.cpython-35.pyc 14.732 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pstats.cpython-35.opt-1.pyc 23.229 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pstats.cpython-35.opt-2.pyc 20.826 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pstats.cpython-35.pyc 23.229 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pty.cpython-35.opt-1.pyc 4.105 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pty.cpython-35.opt-2.pyc 3.271 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pty.cpython-35.pyc 4.105 KB -rw-r--r-- 2024-05-31 13:50 R E G D
py_compile.cpython-35.opt-1.pyc 6.717 KB -rw-r--r-- 2024-05-31 13:50 R E G D
py_compile.cpython-35.opt-2.pyc 3.193 KB -rw-r--r-- 2024-05-31 13:50 R E G D
py_compile.cpython-35.pyc 6.717 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pyclbr.cpython-35.opt-1.pyc 8.886 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pyclbr.cpython-35.opt-2.pyc 6.149 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pyclbr.cpython-35.pyc 8.886 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pydoc.cpython-35.opt-1.pyc 88.226 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pydoc.cpython-35.opt-2.pyc 79.25 KB -rw-r--r-- 2024-05-31 13:50 R E G D
pydoc.cpython-35.pyc 88.285 KB -rw-r--r-- 2024-05-31 13:50 R E G D
queue.cpython-35.opt-1.pyc 8.979 KB -rw-r--r-- 2024-05-31 13:50 R E G D
queue.cpython-35.opt-2.pyc 5.266 KB -rw-r--r-- 2024-05-31 13:50 R E G D
queue.cpython-35.pyc 8.979 KB -rw-r--r-- 2024-05-31 13:50 R E G D
quopri.cpython-35.opt-1.pyc 6.046 KB -rw-r--r-- 2024-05-31 13:50 R E G D
quopri.cpython-35.opt-2.pyc 5.032 KB -rw-r--r-- 2024-05-31 13:50 R E G D
quopri.cpython-35.pyc 6.251 KB -rw-r--r-- 2024-05-31 13:50 R E G D
random.cpython-35.opt-1.pyc 18.874 KB -rw-r--r-- 2024-05-31 13:50 R E G D
random.cpython-35.opt-2.pyc 12.726 KB -rw-r--r-- 2024-05-31 13:50 R E G D
random.cpython-35.pyc 18.874 KB -rw-r--r-- 2024-05-31 13:50 R E G D
re.cpython-35.opt-1.pyc 14.113 KB -rw-r--r-- 2024-05-31 13:50 R E G D
re.cpython-35.opt-2.pyc 6.025 KB -rw-r--r-- 2024-05-31 13:50 R E G D
re.cpython-35.pyc 14.113 KB -rw-r--r-- 2024-05-31 13:50 R E G D
reprlib.cpython-35.opt-1.pyc 5.819 KB -rw-r--r-- 2024-05-31 13:50 R E G D
reprlib.cpython-35.opt-2.pyc 5.665 KB -rw-r--r-- 2024-05-31 13:50 R E G D
reprlib.cpython-35.pyc 5.819 KB -rw-r--r-- 2024-05-31 13:50 R E G D
rlcompleter.cpython-35.opt-1.pyc 5.646 KB -rw-r--r-- 2024-05-31 13:50 R E G D
rlcompleter.cpython-35.opt-2.pyc 3.044 KB -rw-r--r-- 2024-05-31 13:50 R E G D
rlcompleter.cpython-35.pyc 5.646 KB -rw-r--r-- 2024-05-31 13:50 R E G D
runpy.cpython-35.opt-1.pyc 8.441 KB -rw-r--r-- 2024-05-31 13:50 R E G D
runpy.cpython-35.opt-2.pyc 6.929 KB -rw-r--r-- 2024-05-31 13:50 R E G D
runpy.cpython-35.pyc 8.441 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sched.cpython-35.opt-1.pyc 6.217 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sched.cpython-35.opt-2.pyc 3.237 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sched.cpython-35.pyc 6.217 KB -rw-r--r-- 2024-05-31 13:50 R E G D
selectors.cpython-35.opt-1.pyc 18.518 KB -rw-r--r-- 2024-05-31 13:50 R E G D
selectors.cpython-35.opt-2.pyc 14.617 KB -rw-r--r-- 2024-05-31 13:50 R E G D
selectors.cpython-35.pyc 18.518 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shelve.cpython-35.opt-1.pyc 9.707 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shelve.cpython-35.opt-2.pyc 5.629 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shelve.cpython-35.pyc 9.707 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shlex.cpython-35.opt-1.pyc 7.181 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shlex.cpython-35.opt-2.pyc 6.677 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shlex.cpython-35.pyc 7.181 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shutil.cpython-35.opt-1.pyc 31.874 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shutil.cpython-35.opt-2.pyc 21.645 KB -rw-r--r-- 2024-05-31 13:50 R E G D
shutil.cpython-35.pyc 31.874 KB -rw-r--r-- 2024-05-31 13:50 R E G D
signal.cpython-35.opt-1.pyc 2.683 KB -rw-r--r-- 2024-05-31 13:50 R E G D
signal.cpython-35.opt-2.pyc 2.46 KB -rw-r--r-- 2024-05-31 13:50 R E G D
signal.cpython-35.pyc 2.683 KB -rw-r--r-- 2024-05-31 13:50 R E G D
site.cpython-35.opt-1.pyc 17.251 KB -rw-r--r-- 2024-05-31 13:50 R E G D
site.cpython-35.opt-2.pyc 11.729 KB -rw-r--r-- 2024-05-31 13:50 R E G D
site.cpython-35.pyc 17.251 KB -rw-r--r-- 2024-05-31 13:50 R E G D
smtpd.cpython-35.opt-1.pyc 28.614 KB -rw-r--r-- 2024-05-31 13:50 R E G D
smtpd.cpython-35.opt-2.pyc 26.023 KB -rw-r--r-- 2024-05-31 13:50 R E G D
smtpd.cpython-35.pyc 28.614 KB -rw-r--r-- 2024-05-31 13:50 R E G D
smtplib.cpython-35.opt-1.pyc 36.107 KB -rw-r--r-- 2024-05-31 13:50 R E G D
smtplib.cpython-35.opt-2.pyc 20.058 KB -rw-r--r-- 2024-05-31 13:50 R E G D
smtplib.cpython-35.pyc 36.18 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sndhdr.cpython-35.opt-1.pyc 6.743 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sndhdr.cpython-35.opt-2.pyc 5.487 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sndhdr.cpython-35.pyc 6.743 KB -rw-r--r-- 2024-05-31 13:50 R E G D
socket.cpython-35.opt-1.pyc 22.483 KB -rw-r--r-- 2024-05-31 13:50 R E G D
socket.cpython-35.opt-2.pyc 15.218 KB -rw-r--r-- 2024-05-31 13:50 R E G D
socket.cpython-35.pyc 22.532 KB -rw-r--r-- 2024-05-31 13:50 R E G D
socketserver.cpython-35.opt-1.pyc 22.652 KB -rw-r--r-- 2024-05-31 13:50 R E G D
socketserver.cpython-35.opt-2.pyc 12.121 KB -rw-r--r-- 2024-05-31 13:50 R E G D
socketserver.cpython-35.pyc 22.652 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_compile.cpython-35.opt-1.pyc 10.5 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_compile.cpython-35.opt-2.pyc 10.094 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_compile.cpython-35.pyc 10.664 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_constants.cpython-35.opt-1.pyc 6.172 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_constants.cpython-35.opt-2.pyc 5.753 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_constants.cpython-35.pyc 6.172 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_parse.cpython-35.opt-1.pyc 21.869 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_parse.cpython-35.opt-2.pyc 21.82 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sre_parse.cpython-35.pyc 21.901 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ssl.cpython-35.opt-1.pyc 34.996 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ssl.cpython-35.opt-2.pyc 25.884 KB -rw-r--r-- 2024-05-31 13:50 R E G D
ssl.cpython-35.pyc 34.996 KB -rw-r--r-- 2024-05-31 13:50 R E G D
stat.cpython-35.opt-1.pyc 4.064 KB -rw-r--r-- 2024-05-31 13:50 R E G D
stat.cpython-35.opt-2.pyc 3.4 KB -rw-r--r-- 2024-05-31 13:50 R E G D
stat.cpython-35.pyc 4.064 KB -rw-r--r-- 2024-05-31 13:50 R E G D
statistics.cpython-35.opt-1.pyc 16.402 KB -rw-r--r-- 2024-05-31 13:50 R E G D
statistics.cpython-35.opt-2.pyc 6.768 KB -rw-r--r-- 2024-05-31 13:50 R E G D
statistics.cpython-35.pyc 16.697 KB -rw-r--r-- 2024-05-31 13:50 R E G D
string.cpython-35.opt-1.pyc 8.408 KB -rw-r--r-- 2024-05-31 13:50 R E G D
string.cpython-35.opt-2.pyc 7.324 KB -rw-r--r-- 2024-05-31 13:50 R E G D
string.cpython-35.pyc 8.408 KB -rw-r--r-- 2024-05-31 13:50 R E G D
stringprep.cpython-35.opt-1.pyc 12.618 KB -rw-r--r-- 2024-05-31 13:50 R E G D
stringprep.cpython-35.opt-2.pyc 12.403 KB -rw-r--r-- 2024-05-31 13:50 R E G D
stringprep.cpython-35.pyc 12.68 KB -rw-r--r-- 2024-05-31 13:50 R E G D
struct.cpython-35.opt-1.pyc 0.339 KB -rw-r--r-- 2024-05-31 13:50 R E G D
struct.cpython-35.opt-2.pyc 0.339 KB -rw-r--r-- 2024-05-31 13:50 R E G D
struct.cpython-35.pyc 0.339 KB -rw-r--r-- 2024-05-31 13:50 R E G D
subprocess.cpython-35.opt-1.pyc 35.897 KB -rw-r--r-- 2024-05-31 13:50 R E G D
subprocess.cpython-35.opt-2.pyc 25.711 KB -rw-r--r-- 2024-05-31 13:50 R E G D
subprocess.cpython-35.pyc 36.008 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sunau.cpython-35.opt-1.pyc 17.774 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sunau.cpython-35.opt-2.pyc 13.29 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sunau.cpython-35.pyc 17.774 KB -rw-r--r-- 2024-05-31 13:50 R E G D
symbol.cpython-35.opt-1.pyc 2.666 KB -rw-r--r-- 2024-05-31 13:50 R E G D
symbol.cpython-35.opt-2.pyc 2.59 KB -rw-r--r-- 2024-05-31 13:50 R E G D
symbol.cpython-35.pyc 2.666 KB -rw-r--r-- 2024-05-31 13:50 R E G D
symtable.cpython-35.opt-1.pyc 10.64 KB -rw-r--r-- 2024-05-31 13:50 R E G D
symtable.cpython-35.opt-2.pyc 9.957 KB -rw-r--r-- 2024-05-31 13:50 R E G D
symtable.cpython-35.pyc 10.759 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sysconfig.cpython-35.opt-1.pyc 16.56 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sysconfig.cpython-35.opt-2.pyc 14.048 KB -rw-r--r-- 2024-05-31 13:50 R E G D
sysconfig.cpython-35.pyc 16.56 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tabnanny.cpython-35.opt-1.pyc 7.524 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tabnanny.cpython-35.opt-2.pyc 6.609 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tabnanny.cpython-35.pyc 7.524 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tarfile.cpython-35.opt-1.pyc 67.463 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tarfile.cpython-35.opt-2.pyc 53.772 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tarfile.cpython-35.pyc 67.463 KB -rw-r--r-- 2024-05-31 13:50 R E G D
telnetlib.cpython-35.opt-1.pyc 18.78 KB -rw-r--r-- 2024-05-31 13:50 R E G D
telnetlib.cpython-35.opt-2.pyc 11.442 KB -rw-r--r-- 2024-05-31 13:50 R E G D
telnetlib.cpython-35.pyc 18.78 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tempfile.cpython-35.opt-1.pyc 23.08 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tempfile.cpython-35.opt-2.pyc 16.75 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tempfile.cpython-35.pyc 23.08 KB -rw-r--r-- 2024-05-31 13:50 R E G D
textwrap.cpython-35.opt-1.pyc 13.927 KB -rw-r--r-- 2024-05-31 13:50 R E G D
textwrap.cpython-35.opt-2.pyc 6.797 KB -rw-r--r-- 2024-05-31 13:50 R E G D
textwrap.cpython-35.pyc 14.011 KB -rw-r--r-- 2024-05-31 13:50 R E G D
this.cpython-35.opt-1.pyc 1.285 KB -rw-r--r-- 2024-05-31 13:50 R E G D
this.cpython-35.opt-2.pyc 1.285 KB -rw-r--r-- 2024-05-31 13:50 R E G D
this.cpython-35.pyc 1.285 KB -rw-r--r-- 2024-05-31 13:50 R E G D
threading.cpython-35.opt-1.pyc 37.42 KB -rw-r--r-- 2024-05-31 13:50 R E G D
threading.cpython-35.opt-2.pyc 21.73 KB -rw-r--r-- 2024-05-31 13:50 R E G D
threading.cpython-35.pyc 38.164 KB -rw-r--r-- 2024-05-31 13:50 R E G D
timeit.cpython-35.opt-1.pyc 10.752 KB -rw-r--r-- 2024-05-31 13:50 R E G D
timeit.cpython-35.opt-2.pyc 5.385 KB -rw-r--r-- 2024-05-31 13:50 R E G D
timeit.cpython-35.pyc 10.752 KB -rw-r--r-- 2024-05-31 13:50 R E G D
token.cpython-35.opt-1.pyc 3.587 KB -rw-r--r-- 2024-05-31 13:50 R E G D
token.cpython-35.opt-2.pyc 3.536 KB -rw-r--r-- 2024-05-31 13:50 R E G D
token.cpython-35.pyc 3.587 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tokenize.cpython-35.opt-1.pyc 19.933 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tokenize.cpython-35.opt-2.pyc 16.415 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tokenize.cpython-35.pyc 19.981 KB -rw-r--r-- 2024-05-31 13:50 R E G D
trace.cpython-35.opt-1.pyc 23.322 KB -rw-r--r-- 2024-05-31 13:50 R E G D
trace.cpython-35.opt-2.pyc 20.708 KB -rw-r--r-- 2024-05-31 13:50 R E G D
trace.cpython-35.pyc 23.378 KB -rw-r--r-- 2024-05-31 13:50 R E G D
traceback.cpython-35.opt-1.pyc 19.659 KB -rw-r--r-- 2024-05-31 13:50 R E G D
traceback.cpython-35.opt-2.pyc 11.162 KB -rw-r--r-- 2024-05-31 13:50 R E G D
traceback.cpython-35.pyc 19.659 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tracemalloc.cpython-35.opt-1.pyc 16.624 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tracemalloc.cpython-35.opt-2.pyc 15.245 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tracemalloc.cpython-35.pyc 16.624 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tty.cpython-35.opt-1.pyc 1.119 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tty.cpython-35.opt-2.pyc 1.019 KB -rw-r--r-- 2024-05-31 13:50 R E G D
tty.cpython-35.pyc 1.119 KB -rw-r--r-- 2024-05-31 13:50 R E G D
types.cpython-35.opt-1.pyc 8.535 KB -rw-r--r-- 2024-05-31 13:50 R E G D
types.cpython-35.opt-2.pyc 7.394 KB -rw-r--r-- 2024-05-31 13:50 R E G D
types.cpython-35.pyc 8.535 KB -rw-r--r-- 2024-05-31 13:50 R E G D
typing.cpython-35.opt-1.pyc 76.922 KB -rw-r--r-- 2024-05-31 13:50 R E G D
typing.cpython-35.opt-2.pyc 60.099 KB -rw-r--r-- 2024-05-31 13:50 R E G D
typing.cpython-35.pyc 77.502 KB -rw-r--r-- 2024-05-31 13:50 R E G D
uu.cpython-35.opt-1.pyc 3.862 KB -rw-r--r-- 2024-05-31 13:50 R E G D
uu.cpython-35.opt-2.pyc 3.647 KB -rw-r--r-- 2024-05-31 13:50 R E G D
uu.cpython-35.pyc 3.862 KB -rw-r--r-- 2024-05-31 13:50 R E G D
uuid.cpython-35.opt-1.pyc 21.101 KB -rw-r--r-- 2024-05-31 13:50 R E G D
uuid.cpython-35.opt-2.pyc 14.585 KB -rw-r--r-- 2024-05-31 13:50 R E G D
uuid.cpython-35.pyc 21.166 KB -rw-r--r-- 2024-05-31 13:50 R E G D
warnings.cpython-35.opt-1.pyc 12.083 KB -rw-r--r-- 2024-05-31 13:50 R E G D
warnings.cpython-35.opt-2.pyc 9.793 KB -rw-r--r-- 2024-05-31 13:50 R E G D
warnings.cpython-35.pyc 12.739 KB -rw-r--r-- 2024-05-31 13:50 R E G D
wave.cpython-35.opt-1.pyc 18.502 KB -rw-r--r-- 2024-05-31 13:50 R E G D
wave.cpython-35.opt-2.pyc 12.646 KB -rw-r--r-- 2024-05-31 13:50 R E G D
wave.cpython-35.pyc 18.562 KB -rw-r--r-- 2024-05-31 13:50 R E G D
weakref.cpython-35.opt-1.pyc 20.146 KB -rw-r--r-- 2024-05-31 13:50 R E G D
weakref.cpython-35.opt-2.pyc 16.911 KB -rw-r--r-- 2024-05-31 13:50 R E G D
weakref.cpython-35.pyc 20.182 KB -rw-r--r-- 2024-05-31 13:50 R E G D
webbrowser.cpython-35.opt-1.pyc 16.966 KB -rw-r--r-- 2024-05-31 13:50 R E G D
webbrowser.cpython-35.opt-2.pyc 15.115 KB -rw-r--r-- 2024-05-31 13:50 R E G D
webbrowser.cpython-35.pyc 17.004 KB -rw-r--r-- 2024-05-31 13:50 R E G D
xdrlib.cpython-35.opt-1.pyc 8.756 KB -rw-r--r-- 2024-05-31 13:50 R E G D
xdrlib.cpython-35.opt-2.pyc 8.274 KB -rw-r--r-- 2024-05-31 13:50 R E G D
xdrlib.cpython-35.pyc 8.756 KB -rw-r--r-- 2024-05-31 13:50 R E G D
zipapp.cpython-35.opt-1.pyc 5.886 KB -rw-r--r-- 2024-05-31 13:50 R E G D
zipapp.cpython-35.opt-2.pyc 4.737 KB -rw-r--r-- 2024-05-31 13:50 R E G D
zipapp.cpython-35.pyc 5.886 KB -rw-r--r-- 2024-05-31 13:50 R E G D
zipfile.cpython-35.opt-1.pyc 48.548 KB -rw-r--r-- 2024-05-31 13:50 R E G D
zipfile.cpython-35.opt-2.pyc 43.155 KB -rw-r--r-- 2024-05-31 13:50 R E G D
zipfile.cpython-35.pyc 48.628 KB -rw-r--r-- 2024-05-31 13:50 R E G D
REQUEST EXIT
 Yf}*@sdZddddddddd d d d d ddddddddddddddddddd d!d"d#d$g$ZeZd%Zd&Zd'Zd(d)lZd(d)lZ d(d)l Z y#d(d*l m Z e dd+ZWnek rd,d-ZYnXdZdZdZdZdZdZdZdZd.Ze jd/d0d1kr[d2Zd2Zd2 Znd3Zd3Zd3 Zeed1ZGd4ddeZGd5ddeZ Gd6d d eZ!Gd7dde!Z"Gd8d d ee#Z$Gd9dde!Z%Gd:dde!e#Z&Gd;d d eZ'Gd<dde!Z(Gd=d d eZ)Gd>d d eZ*Gd?dde'e)Z+Gd@dde'e)e*Z,GdAddee-Z.e e$e'e+e)e,e!e*e.g Z/e"e!e%e!e&e!e(e!iZ0eeeeeeeefZ1yd(d)l2Z2Wn4ek reGdBdCdCe3Z4e4Z2[4YnXy e2j5WnKe6k re7e2j8dDre2j8`9dEdZ:dFdZ;YnFXe2j5Z5e7e5dDre5`9e5dGdZ;e5dHdZ:[2[5d)dIdZ<GdJdde3Z=dKdLdMZ>e j?j@e=GdNdOdOe3ZAGdPdde3ZBGdQdRdRe3ZCd(dSdTZDeEjFZGdUdVZHdWdXZIdYdZZJd[d\ZKd]d^d_ZLd`daZMdbdcZNGdddedee3ZOeOjPZQd]dfdgZRdhdiZSdjdkZTdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}i d~dZUdKdKddZVdKddZWeBdddede$e+e!gdgdddd dd1dd(ZXeBdddede$e+e!e e,gdgZYeBdddedgdgZZd(d)l[Z[e[j\de[j]e[j^Bj_Z`e[j\dj_Zae[j\dj_Zbe[j\de[j]e[jcBZd[[yd(d)leZfWnek rYnXd)ddZgddZhddZid1ddZjddZkddZle=dZme=dZne=dZoe=d(Zpe=d1Zqe=d1 ZremenfZse jtjuZve jtjwZxe jtjyZze{d{evd/evZ|[ d)S)a This is an implementation of decimal floating point arithmetic based on the General Decimal Arithmetic Specification: http://speleotrove.com/decimal/decarith.html and IEEE standard 854-1987: http://en.wikipedia.org/wiki/IEEE_854-1987 Decimal floating point has finite precision with arbitrarily large bounds. The purpose of this module is to support arithmetic using familiar "schoolhouse" rules and to avoid some of the tricky representation issues associated with binary floating point. The package is especially useful for financial applications or for contexts where users have expectations that are at odds with binary floating point (for instance, in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected Decimal('0.00')). Here are some examples of using the decimal module: >>> from decimal import * >>> setcontext(ExtendedContext) >>> Decimal(0) Decimal('0') >>> Decimal('1') Decimal('1') >>> Decimal('-.0123') Decimal('-0.0123') >>> Decimal(123456) Decimal('123456') >>> Decimal('123.45e12345678') Decimal('1.2345E+12345680') >>> Decimal('1.33') + Decimal('1.27') Decimal('2.60') >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') Decimal('-2.20') >>> dig = Decimal(1) >>> print(dig / Decimal(3)) 0.333333333 >>> getcontext().prec = 18 >>> print(dig / Decimal(3)) 0.333333333333333333 >>> print(dig.sqrt()) 1 >>> print(Decimal(3).sqrt()) 1.73205080756887729 >>> print(Decimal(3) ** 123) 4.85192780976896427E+58 >>> inf = Decimal(1) / Decimal(0) >>> print(inf) Infinity >>> neginf = Decimal(-1) / Decimal(0) >>> print(neginf) -Infinity >>> print(neginf + inf) NaN >>> print(neginf * inf) -Infinity >>> print(dig / 0) Infinity >>> getcontext().traps[DivisionByZero] = 1 >>> print(dig / 0) Traceback (most recent call last): ... ... ... decimal.DivisionByZero: x / 0 >>> c = Context() >>> c.traps[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.divide(Decimal(0), Decimal(0)) Decimal('NaN') >>> c.traps[InvalidOperation] = 1 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> print(c.divide(Decimal(0), Decimal(0))) Traceback (most recent call last): ... ... ... decimal.InvalidOperation: 0 / 0 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> c.traps[InvalidOperation] = 0 >>> print(c.divide(Decimal(0), Decimal(0))) NaN >>> print(c.flags[InvalidOperation]) 1 >>> DecimalContext DecimalTupleDefaultContext BasicContextExtendedContextDecimalExceptionClampedInvalidOperationDivisionByZeroInexactRounded SubnormalOverflow UnderflowFloatOperationDivisionImpossibleInvalidContextConversionSyntaxDivisionUndefined ROUND_DOWN ROUND_HALF_UPROUND_HALF_EVEN ROUND_CEILING ROUND_FLOORROUND_UPROUND_HALF_DOWN ROUND_05UP setcontext getcontext localcontextMAX_PRECMAX_EMAXMIN_EMIN MIN_ETINY HAVE_THREADSZdecimalz1.70z2.4.1N) namedtuplezsign digits exponentcGs|S)N)argsr'r'//opt/alt/python35/lib64/python3.5/_pydecimal.pysr*T?lNZoi@Tc@s"eZdZdZddZdS)ra1Base exception class. Used exceptions derive from this. If an exception derives from another exception besides this (such as Underflow (Inexact, Rounded, Subnormal) that indicates that it is only called if the others are present. This isn't actually used for anything, though. handle -- Called when context._raise_error is called and the trap_enabler is not set. First argument is self, second is the context. More arguments can be given, those being after the explanation in _raise_error (For example, context._raise_error(NewError, '(-x)!', self._sign) would call NewError().handle(context, self._sign).) To define a new exception, it should be sufficient to have it derive from DecimalException. cGsdS)Nr')selfcontextr(r'r'r)handleszDecimalException.handleN)__name__ __module__ __qualname____doc__r0r'r'r'r)rs c@seZdZdZdS)ra)Exponent of a 0 changed to fit bounds. This occurs and signals clamped if the exponent of a result has been altered in order to fit the constraints of a specific concrete representation. This may occur when the exponent of a zero result would be outside the bounds of a representation, or when a large normal number would have an encoded exponent that cannot be represented. In this latter case, the exponent is reduced to fit and the corresponding number of zero digits are appended to the coefficient ("fold-down"). N)r1r2r3r4r'r'r'r)rs c@s"eZdZdZddZdS)r a0An invalid operation was performed. Various bad things cause this: Something creates a signaling NaN -INF + INF 0 * (+-)INF (+-)INF / (+-)INF x % 0 (+-)INF % x x._rescale( non-integer ) sqrt(-x) , x > 0 0 ** 0 x ** (non-integer) x ** (+-)INF An operand is invalid The result of the operation after these is a quiet positive NaN, except when the cause is a signaling NaN, in which case the result is also a quiet NaN, but with the original sign, and an optional diagnostic information. cGs:|r6t|dj|djdd}|j|StS)Nr%nT)_dec_from_triple_sign_int_fix_nan_NaN)r.r/r(ansr'r'r)r0s# zInvalidOperation.handleN)r1r2r3r4r0r'r'r'r)r s c@s"eZdZdZddZdS)rzTrying to convert badly formed string. This occurs and signals invalid-operation if a string is being converted to a number and it does not conform to the numeric string syntax. The result is [0,qNaN]. cGstS)N)r:)r.r/r(r'r'r)r0szConversionSyntax.handleN)r1r2r3r4r0r'r'r'r)rs c@s"eZdZdZddZdS)r aDivision by 0. This occurs and signals division-by-zero if division of a finite number by zero was attempted (during a divide-integer or divide operation, or a power operation with negative right-hand operand), and the dividend was not zero. The result of the operation is [sign,inf], where sign is the exclusive or of the signs of the operands for divide, or is 1 for an odd power of -0, for power. cGst|S)N)_SignedInfinity)r.r/signr(r'r'r)r0szDivisionByZero.handleN)r1r2r3r4r0r'r'r'r)r s c@s"eZdZdZddZdS)rzCannot perform the division adequately. This occurs and signals invalid-operation if the integer result of a divide-integer or remainder operation had too many digits (would be longer than precision). The result is [0,qNaN]. cGstS)N)r:)r.r/r(r'r'r)r0szDivisionImpossible.handleN)r1r2r3r4r0r'r'r'r)rs c@s"eZdZdZddZdS)rzUndefined result of division. This occurs and signals invalid-operation if division by zero was attempted (during a divide-integer, divide, or remainder operation), and the dividend is also zero. The result is [0,qNaN]. cGstS)N)r:)r.r/r(r'r'r)r0)szDivisionUndefined.handleN)r1r2r3r4r0r'r'r'r)r!s c@seZdZdZdS)r aHad to round, losing information. This occurs and signals inexact whenever the result of an operation is not exact (that is, it needed to be rounded and any discarded digits were non-zero), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The inexact signal may be tested (or trapped) to determine if a given operation (or sequence of operations) was inexact. N)r1r2r3r4r'r'r'r)r ,s c@s"eZdZdZddZdS)raInvalid context. Unknown rounding, for example. This occurs and signals invalid-operation if an invalid context was detected during an operation. This can occur if contexts are not checked on creation and either the precision exceeds the capability of the underlying concrete representation or an unknown or unsupported rounding was specified. These aspects of the context need only be checked when the values are required to be used. The result is [0,qNaN]. cGstS)N)r:)r.r/r(r'r'r)r0CszInvalidContext.handleN)r1r2r3r4r0r'r'r'r)r8s c@seZdZdZdS)r aNumber got rounded (not necessarily changed during rounding). This occurs and signals rounded whenever the result of an operation is rounded (that is, some zero or non-zero digits were discarded from the coefficient), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The rounded signal may be tested (or trapped) to determine if a given operation (or sequence of operations) caused a loss of precision. N)r1r2r3r4r'r'r'r)r Fs c@seZdZdZdS)r aExponent < Emin before rounding. This occurs and signals subnormal whenever the result of a conversion or operation is subnormal (that is, its adjusted exponent is less than Emin, before any rounding). The result in all cases is unchanged. The subnormal signal may be tested (or trapped) to determine if a given or operation (or sequence of operations) yielded a subnormal result. N)r1r2r3r4r'r'r'r)r Rs c@s"eZdZdZddZdS)raNumerical overflow. This occurs and signals overflow if the adjusted exponent of a result (from a conversion or from an operation that is not an attempt to divide by zero), after rounding, would be greater than the largest value that can be handled by the implementation (the value Emax). The result depends on the rounding mode: For round-half-up and round-half-even (and for round-half-down and round-up, if implemented), the result of the operation is [sign,inf], where sign is the sign of the intermediate result. For round-down, the result is the largest finite number that can be represented in the current precision, with the sign of the intermediate result. For round-ceiling, the result is the same as for round-down if the sign of the intermediate result is 1, or is [0,inf] otherwise. For round-floor, the result is the same as for round-down if the sign of the intermediate result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded will also be raised. cGs|jttttfkr#t|S|dkrk|jtkrFt|St|d|j|j |jdS|dkr|jt krt|St|d|j|j |jdSdS)Nr%9r-) roundingrrrrr<rr6precEmaxr)r.r/r=r(r'r'r)r0ss   zOverflow.handleN)r1r2r3r4r0r'r'r'r)r]s c@seZdZdZdS)raxNumerical underflow with result rounded to 0. This occurs and signals underflow if a result is inexact and the adjusted exponent of the result would be smaller (more negative) than the smallest value that can be handled by the implementation (the value Emin). That is, the result is both inexact and subnormal. The result after an underflow will be a subnormal number rounded, if necessary, so that its exponent is not less than Etiny. This may result in 0 with the sign of the intermediate result and an exponent of Etiny. In all cases, Inexact, Rounded, and Subnormal will also be raised. N)r1r2r3r4r'r'r'r)rs c@seZdZdZdS)raEnable stricter semantics for mixing floats and Decimals. If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal() constructor, context.create_decimal() and all comparison operators. Both conversion and comparisons are exact. Any occurrence of a mixed operation is silently recorded by setting FloatOperation in the context flags. Explicit conversions with Decimal.from_float() or context.create_decimal_from_float() do not set the flag. Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other mixed operations raise FloatOperation. N)r1r2r3r4r'r'r'r)rs c@seZdZeddZdS) MockThreadingcCs |jtS)N)modules __xname__)r.sysr'r'r)localszMockThreading.localN)r1r2r3rErFr'r'r'r)rBs rB__decimal_context__cCs>|tttfkr+|j}|j|tj_dS)z%Set this thread's context to context.N)rrrcopy clear_flags threadingcurrent_threadrG)r/r'r'r)rs  c CsFytjjSWn.tk rAt}|tj_|SYnXdS)zReturns this thread's context. If this thread does not yet have a context, returns a new context and sets this thread's context. New contexts are copies of DefaultContext. N)rJrKrGAttributeErrorr)r/r'r'r)rs   c Cs:y |jSWn(tk r5t}||_|SYnXdS)zReturns this thread's context. If this thread does not yet have a context, returns a new context and sets this thread's context. New contexts are copies of DefaultContext. N)rGrLr)_localr/r'r'r)rs     cCs8|tttfkr+|j}|j||_dS)z%Set this thread's context to context.N)rrrrHrIrG)r/rMr'r'r)rs  cCs|dkrt}t|S)abReturn a context manager for a copy of the supplied context Uses a copy of the current context if no context is specified The returned context manager creates a local decimal context in a with statement: def sin(x): with localcontext() as ctx: ctx.prec += 2 # Rest of sin calculation algorithm # uses a precision 2 greater than normal return +s # Convert result to normal precision def sin(x): with localcontext(ExtendedContext): # Rest of sin calculation algorithm # uses the Extended Context from the # General Decimal Arithmetic Specification return +s # Convert result to normal context >>> setcontext(DefaultContext) >>> print(getcontext().prec) 28 >>> with localcontext(): ... ctx = getcontext() ... ctx.prec += 2 ... print(ctx.prec) ... 30 >>> with localcontext(ExtendedContext): ... print(getcontext().prec) ... 9 >>> print(getcontext().prec) 28 N)r_ContextManager)Zctxr'r'r)rs$ c@seZdZdZdZdddd Zed d Zd d ZddZ ddddZ ddZ ddZ ddZ dddZdddZdddZdddZdd d!Zdd"d#Zd$d%Zd&d'Zd(d)Zd*dd+d,Zdd-d.Zdd/d0Zdd1d2Zd3dd4d5Zdd6d7ZeZdd8d9Zdd:d;Zdd<d=Z e Z!dd>d?Z"d@dAZ#ddBdCZ$ddDdEZ%ddFdGZ&ddHdIZ'ddJdKZ(ddLdMZ)ddNdOZ*ddPdQZ+dRdSZ,dTdUZ-e-Z.dVdWZ/e0e/Z/dXdYZ1e0e1Z1dZd[Z2d\d]Z3d^d_Z4d`daZ5dbdcZ6dddeZ7dfdgZ8dhdiZ9djdkZ:dldmZ;dndoZ<dpdqZ=e>dre6dse7dte8due9dve:dwe;dxe<dye=Z?ddzd{Z@d|d}ZAd~dZBdddZCdddZDddZEddddZFdddZGdddZHddddZIdddZJddZKddZLddddZMddddZNeNZOdddZPdddZQdddZRddZSddZTddZUddZVdddZWdddZXdddZYddZZddZ[dddZ\dddZ]ddZ^ddZ_ddZ`ddZadddZbddZcddZdddZedddZfddZgddZhdddZiddZjdddZkdddZlddZmddZndddZodddZpdddZqdddZrdddZsdddZtdddZudddZvdddZwdddZxddZydddZzdddZ{dddZ|ddZ}ddZ~ddZddddZdS)rz,Floating point class for decimal arithmetic._expr8r7 _is_special0Nc Cstj|}t|trt|j}|dkre|dkrQt}|jtd|S|j ddkrd|_ n d|_ |j d}|dk r|j dpd }t |j d pd }tt |||_ |t ||_d |_n|j d }|dk rxtt |p<d jd |_ |j drld|_qd|_nd |_ d|_d|_|St|t r|dkrd|_ n d|_ d|_tt||_ d |_|St|tr5|j|_|j |_ |j |_ |j|_|St|tr|j|_ t|j |_ t |j|_d |_|St|ttfr:t |dkrtdt|dt o|ddkstd|d|_ |ddkr"d |_ |d|_d|_ng} xk|dD]_} t| t rd| ko_dknr| sv| dkr| j| q3tdq3W|ddkrd jtt| |_ |d|_d|_n\t|dt r*d jtt| pdg|_ |d|_d |_n td|St|tr|dkr^t}|jtdtj|}|j|_|j |_ |j |_ |j|_|Std|dS)aCreate a decimal point instance. >>> Decimal('3.14') # string input Decimal('3.14') >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) Decimal('3.14') >>> Decimal(314) # int Decimal('314') >>> Decimal(Decimal(314)) # another decimal instance Decimal('314') >>> Decimal(' 3.14 \n') # leading and trailing whitespace okay Decimal('3.14') NzInvalid literal for Decimal: %rr=-r-r%intZfracexprQFdiagsignalNr5FTztInvalid tuple size in creation of Decimal from list or tuple. The list or tuple should have exactly three elements.z|Invalid sign. The first value in the tuple should be an integer; either 0 for a positive number or 1 for a negative number.r+ zTThe second value in the tuple must be composed of integers in the range 0 through 9.zUThe third value in the tuple must be an integer, or one of the strings 'F', 'n', 'N'.z;strict semantics for mixing floats and Decimals are enabledzCannot convert %r to Decimal)r%r-)r5rX) object__new__ isinstancestr_parserstripr _raise_errorrgroupr7rSr8lenrOrPlstripabsr_WorkRepr=rUlisttuple ValueErrorappendjoinmapfloatr from_float TypeError) clsvaluer/r.mintpartfracpartrUrVdigitsZdigitr'r'r)r]4s          $                 #     +  $          zDecimal.__new__cCst|tr||St|ts4tdtj|sRtj|rb|t|Stjd|dkrd}nd}t |j \}}|j d}t |t |d|| }|tkr|S||SdS)a.Converts a float to a decimal number, exactly. Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). Since 0.1 is not exactly representable in binary floating point, the value is stored as the nearest representable value which is 0x1.999999999999ap-4. The exact equivalent of the value in decimal is 0.1000000000000000055511151231257827021181583404541015625. >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(-float('inf')) Decimal('-Infinity') >>> Decimal.from_float(-0.0) Decimal('-0') zargument must be int or float.g?r%r-N)r^rSrnrp_mathZisinfZisnanreprZcopysignrfas_integer_ratio bit_lengthr6r_r)rqfr=r5dkresultr'r'r)ros   ! zDecimal.from_floatcCs6|jr2|j}|dkr"dS|dkr2dSdS)zrReturns whether the number is not actually one. 0 if a number 1 if NaN 2 if sNaN r5r-rXr+r%)rPrO)r.rUr'r'r)_isnans    zDecimal._isnancCs$|jdkr |jrdSdSdS)zyReturns whether the number is infinite 0 if finite or not a number 1 if +INF -1 if -INF rYr-r%)rOr7)r.r'r'r) _isinfinitys  zDecimal._isinfinitycCs|j}|dkr!d}n |j}|s9|r|dkrNt}|dkrm|jtd|S|dkr|jtd|S|r|j|S|j|SdS)zReturns whether the number is not actually one. if self, other are sNaN, signal if self, other are NaN return nan return 0 Done before operations. NFr+sNaNr%)rrrbr r9)r.otherr/ self_is_nan other_is_nanr'r'r) _check_nanss"             zDecimal._check_nanscCs|dkrt}|js'|jr|jrF|jtd|S|jre|jtd|S|jr|jtd|S|jr|jtd|SdS)aCVersion of _check_nans used for the signaling comparisons compare_signal, __le__, __lt__, __ge__, __gt__. Signal InvalidOperation if either self or other is a (quiet or signaling) NaN. Signaling NaNs take precedence over quiet NaNs. Return 0 if neither operand is a NaN. Nzcomparison involving sNaNzcomparison involving NaNr%)rrPis_snanrbr is_qnan)r.rr/r'r'r)_compare_check_nans.s(          zDecimal._compare_check_nanscCs|jp|jdkS)zuReturn True if self is nonzero; otherwise return False. NaNs and infinities are considered nonzero. rQ)rPr8)r.r'r'r)__bool__OszDecimal.__bool__cCs^|js|jrN|j}|j}||kr:dS||krJdSdS|sj|s^dSd|j S|s{d|jS|j|jkrdS|j|jkrdS|j}|j}||kr7|jd|j|j}|jd|j|j}||krdS||kr)d |j Sd |jSn#||krNd |jSd |j SdS) zCompare the two non-NaN decimal instances self and other. Returns -1 if self < other, 0 if self == other and 1 if self > other. This routine is for internal use only.r%r-rQNrrrrrrrr)rPrr7adjustedr8rO)r.rZself_infZ other_inf self_adjustedZother_adjusted self_paddedZ other_paddedr'r'r)_cmpVs>              z Decimal._cmpcCsTt||dd\}}|tkr+|S|j||rAdS|j|dkS)N equality_opTFr%)_convert_for_comparisonNotImplementedrr)r.rr/r'r'r)__eq__s  zDecimal.__eq__cCsTt||\}}|tkr%|S|j||}|rAdS|j|dkS)NFr%)rrrr)r.rr/r;r'r'r)__lt__s zDecimal.__lt__cCsTt||\}}|tkr%|S|j||}|rAdS|j|dkS)NFr%)rrrr)r.rr/r;r'r'r)__le__s zDecimal.__le__cCsTt||\}}|tkr%|S|j||}|rAdS|j|dkS)NFr%)rrrr)r.rr/r;r'r'r)__gt__s zDecimal.__gt__cCsTt||\}}|tkr%|S|j||}|rAdS|j|dkS)NFr%)rrrr)r.rr/r;r'r'r)__ge__s zDecimal.__ge__cCsYt|dd}|js*|rF|jrF|j||}|rF|St|j|S)zCompare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') raiseitT)_convert_otherrPrrr)r.rr/r;r'r'r)compares zDecimal.comparecCs|jrF|jr$tdn"|jr4tS|jrBt StS|jdkrmtd|jt }ntt |j t }t |j |t }|dkr|n| }|dkrdS|S)zx.__hash__() <==> hash(x)z"Cannot hash a signaling NaN value.r% r-r+r) rPrrpis_nan _PyHASH_NANr7 _PyHASH_INFrOpow_PyHASH_MODULUS _PyHASH_10INVrSr8)r.Zexp_hashZhash_r;r'r'r)__hash__s    zDecimal.__hash__cCs(t|jttt|j|jS)zeRepresents the number as a triple tuple. To show the internals exactly as they are. )rr7rirmrSr8rO)r.r'r'r)as_tupleszDecimal.as_tuplecCsdt|S)z0Represents the number as an instance of Decimal.z Decimal('%s'))r_)r.r'r'r)__repr__szDecimal.__repr__Fc Csddg|j}|jr`|jdkr3|dS|jdkrQ|d|jS|d|jS|jt|j}|jdkr|dkr|}nE|sd }n6|jd kr|d d d }n|d d d }|dkr d }d d | |j}nf|t|jkrF|jd |t|j}d}n*|jd|}d |j|d}||krd}n4|dkrt}ddg|jd||}||||S)zReturn string representation of the number in scientific notation. Captures all of the information in the underlying representation. rTrRrYZInfinityr5NaNrr%r-rQrZ.NeEz%+di)r7rPrOr8rdrcapitals) r.engr/r= leftdigitsdotplacertrurUr'r'r)__str__s:         zDecimal.__str__cCs|jddd|S)a,Convert to a string, using engineering notation if an exponent is needed. Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the decimal place and may require the addition of either one or two trailing zeros. rTr/)r)r.r/r'r'r) to_eng_string.szDecimal.to_eng_stringcCsx|jr%|jd|}|r%|S|dkr:t}| r_|jtkr_|j}n |j}|j|S)zRReturns a copy with the sign switched. Rounds, if it has reason. r/N)rPrrr?rcopy_abs copy_negate_fix)r.r/r;r'r'r)__neg__7s    zDecimal.__neg__cCsx|jr%|jd|}|r%|S|dkr:t}| r_|jtkr_|j}n t|}|j|S)zhReturns a copy, unless it is a sNaN. Rounds the number (if more than precision digits) r/N)rPrrr?rrrr)r.r/r;r'r'r)__pos__Ms    zDecimal.__pos__TcCsi|s|jS|jr5|jd|}|r5|S|jrS|jd|}n|jd|}|S)zReturns the absolute value of self. If the keyword argument 'round' is false, do not round. The expression self.__abs__(round=False) is equivalent to self.copy_abs(). r/)rrPrr7rr)r.roundr/r;r'r'r)__abs__bs   zDecimal.__abs__c Csbt|}|tkr|S|dkr1t}|jsC|jr|j||}|r_|S|jr|j|jkr|jr|jtdSt |S|jrt |St |j |j }d}|j t kr|j|jkrd}| rO| rOt |j|j}|r*d}t|d|}|j|}|S|st||j |jd}|j||j }|j|}|S|st||j |jd}|j||j }|j|}|St|}t|}t|||j\}}t} |j|jkr|j|jkrjt|d|}|j|}|S|j|jkr||}}|jdkrd| _|j|j|_|_qd| _n6|jdkrd| _d\|_|_n d| _|jdkr$|j|j| _n|j|j| _|j| _t | }|j|}|S)zbReturns self + other. -INF + INF (or the reverse) cause InvalidOperation errors. Nz -INF + INFr%r-rQ)r%r%)rrrrPrrr7rbr rminrOr?rr6rmaxr@_rescalerg _normalizer=rSrU) r.rr/r;rUZ negativezeror=op1op2rr'r'r)__add__xs|        !          zDecimal.__add__cCsft|}|tkr|S|js.|jrM|j|d|}|rM|S|j|jd|S)zReturn self - otherr/)rrrPrrr)r.rr/r;r'r'r)__sub__s  zDecimal.__sub__cCs/t|}|tkr|S|j|d|S)zReturn other - selfr/)rrr)r.rr/r'r'r)__rsub__s  zDecimal.__rsub__cCst|}|tkr|S|dkr1t}|j|jA}|jsS|jr|j||}|ro|S|jr|s|jtdSt |S|jr|s|jtdSt |S|j |j }| s| rt |d|}|j |}|S|j dkr=t ||j |}|j |}|S|j dkrtt ||j |}|j |}|St|}t|}t |t|j|j|}|j |}|S)z\Return self * other. (+-) INF * 0 (or its reverse) raise InvalidOperation. Nz (+-)INF * 0z 0 * (+-)INFrQ1)rrrr7rPrrrbr r<rOr6rr8rgr_rS)r.rr/Z resultsignr;Z resultexprrr'r'r)__mul__sH        "zDecimal.__mul__c Csct|}|tkrtS|dkr1t}|j|jA}|jsS|jr|j||}|ro|S|jr|jr|jtdS|jrt |S|jr|jt dt |d|j S|s |s|jt dS|jtd|S|s+|j|j}d}nt|jt|j|jd}|j|j|}t|}t|} |dkrt|jd || j\}} n$t|j| jd | \}} | r|d dkr>|d7}nG|j|j} x4|| kr=|d dkr=|d }|d7}q Wt |t||}|j|S) zReturn self / other.Nz(+-)INF/(+-)INFzDivision by infinityrQz0 / 0zx / 0r%r-rrw)rrrr7rPrrrbr r<rr6Etinyrr rOrdr8r@rgdivmodrSr_r) r.rr/r=r;rUcoeffshiftrr remainder ideal_expr'r'r) __truediv__sP       '   &$  zDecimal.__truediv__c Cs|j|jA}|jr(|j}nt|j|j}|j|j}| sr|jsr|dkrt|dd|j||jfS||jkrlt |}t |}|j |j kr|j d|j |j 9_ n|j d|j |j 9_ t |j |j \}} |d|jkrlt|t |dt|jt | |fS|jtd} | | fS)zReturn (self // other, self % other), to context.prec precision. Assumes that neither self nor other is a NaN, that self is not infinite and that other is nonzero. r+rQr%rz%quotient too large in //, % or divmodr)r7rrOrrr6rr?r@rgrUrSrr_rbr) r.rr/r=rexpdiffrrqrr;r'r'r)_divideZs*       zDecimal._dividecCs/t|}|tkr|S|j|d|S)z)Swaps self/other and returns __truediv__.r/)rrr)r.rr/r'r'r) __rtruediv__{s  zDecimal.__rtruediv__cCs/t|}|tkr|S|dkr1t}|j||}|rS||fS|j|jA}|jr|jr|jtd}||fSt||jtdfS|s|s|jt d}||fS|jt d||jtdfS|j ||\}}|j |}||fS)z6 Return (self // other, self % other) Nzdivmod(INF, INF)zINF % xz divmod(0, 0)zx // 0zx % 0) rrrrr7rrbr r<rr rr)r.rr/r;r=Zquotientrr'r'r) __divmod__s0         zDecimal.__divmod__cCs/t|}|tkr|S|j|d|S)z(Swaps self/other and returns __divmod__.r/)rrr)r.rr/r'r'r) __rdivmod__s  zDecimal.__rdivmod__cCst|}|tkr|S|dkr1t}|j||}|rM|S|jri|jtdS|s|r|jtdS|jtdS|j||d}|j |}|S)z self % other NzINF % xzx % 0z0 % 0r-) rrrrrrbr rrr)r.rr/r;rr'r'r)__mod__s"     zDecimal.__mod__cCs/t|}|tkr|S|j|d|S)z%Swaps self/other and returns __mod__.r/)rrr)r.rr/r'r'r)__rmod__s  zDecimal.__rmod__c Csp|dkrt}t|dd}|j||}|rC|S|jr_|jtdS|s|r{|jtdS|jtdS|jrt|}|j|St |j |j }|st |j d|}|j|S|j |j }||jdkr#|jtS|d krQ|j||j}|j|St|}t|}|j|jkr|jd |j|j9_n|jd |j|j9_t|j|j\}} d | |d@|jkr| |j8} |d7}|d |jkr%|jtS|j } | d krKd| } | } t | t| |}|j|S) zI Remainder nearest to 0- abs(remainder-near) <= other/2 NrTzremainder_near(infinity, x)zremainder_near(x, 0)zremainder_near(0, 0)rQr-r+rr%r)rrrrrbr rrrrrOr6r7rr@rrr?rgrUrSrr_) r.rr/r;ideal_exponentrrrrrr=r'r'r)remainder_nearsZ                      zDecimal.remainder_nearcCst|}|tkr|S|dkr1t}|j||}|rM|S|jr|jru|jtdSt|j|jAS|s|r|jt d|j|jAS|jt dS|j ||dS)z self // otherNz INF // INFzx // 0z0 // 0r%) rrrrrrbr r<r7r rr)r.rr/r;r'r'r) __floordiv__s$       zDecimal.__floordiv__cCs/t|}|tkr|S|j|d|S)z*Swaps self/other and returns __floordiv__.r/)rrr)r.rr/r'r'r) __rfloordiv__6s  zDecimal.__rfloordiv__cCsR|jr<|jr$td|jr3dnd}n t|}t|S)zFloat representation.z%Cannot convert signaling NaN to floatz-nannan)rrrjr7r_rn)r.sr'r'r) __float__=s     zDecimal.__float__cCs|jr<|jr$tdn|jr<tdd|j}|jdkrt|t|jd|jS|t|jd|jpdSdS) z1Converts self to an int, truncating if necessary.zCannot convert NaN to integerz"Cannot convert infinity to integerr-r%rNrQr) rPrrjr OverflowErrorr7rOrSr8)r.rr'r'r)__int__Gs     zDecimal.__int__cCs|S)Nr')r.r'r'r)realVsz Decimal.realcCs tdS)Nr%)r)r.r'r'r)imagZsz Decimal.imagcCs|S)Nr')r.r'r'r) conjugate^szDecimal.conjugatecCstt|S)N)complexrn)r.r'r'r) __complex__aszDecimal.__complex__cCsq|j}|j|j}t||krg|t||djd}t|j||jdSt|S)z2Decapitate the payload of a NaN to fit the contextNrQT) r8r@clamprdrer6r7rOr)r.r/ZpayloadZmax_payload_lenr'r'r)r9ds  #zDecimal._fix_nancCs|jr,|jr"|j|St|S|j}|j}|s|j|g|j}tt |j ||}||j kr|j t t |jd|St|St|j|j |j}||kr|j td|j}|j t|j t|S||k}|r+|}|j |krt|j|j |} | dkrt |jd|d}d} |j|j} | || } |jd| pd} | dkrtt| d} t| |jkr| dd} |d7}||kr/|j td|j}nt |j| |}| r]|r]|j t|rp|j t| r|j t|j t|s|j t |S|r|j t|jdkr|j |kr|j t |jd|j |} t |j| |St|S)zRound if it is necessary to keep self within prec precision. Rounds and fixes the exponent. Does not raise on a sNaN. Arguments: self - Decimal instance context - context used. rQz above Emaxr%rr-Nr)rPrr9rrEtoprArrrrOrbrr6r7rdr8r@rr r _pick_rounding_functionr?r_rSrr )r.r/rrexp_maxZnew_expZexp_minr;Zself_is_subnormalrvZrounding_methodchangedrrr'r'r)rpsn                        z Decimal._fixcCst|j|rdSdSdS)z(Also known as round-towards-0, truncate.r%r-Nr) _all_zerosr8)r.r@r'r'r) _round_downszDecimal._round_downcCs|j| S)zRounds away from 0.)r)r.r@r'r'r) _round_upszDecimal._round_upcCs5|j|dkrdSt|j|r-dSdSdS)zRounds 5 up (away from 0)Z56789r-r%Nr)r8r)r.r@r'r'r)_round_half_ups zDecimal._round_half_upcCs't|j|rdS|j|SdS)z Round 5 downr-Nr) _exact_halfr8r)r.r@r'r'r)_round_half_downszDecimal._round_half_downcCsJt|j|r9|dks5|j|ddkr9dS|j|SdS)z!Round 5 to even, rest to nearest.r%r-02468Nr)rr8r)r.r@r'r'r)_round_half_evens#zDecimal._round_half_evencCs(|jr|j|S|j| SdS)z(Rounds up (not away from 0 if negative.)N)r7r)r.r@r'r'r)_round_ceilings  zDecimal._round_ceilingcCs(|js|j|S|j| SdS)z'Rounds down (not towards 0 if negative)N)r7r)r.r@r'r'r) _round_floors  zDecimal._round_floorcCs<|r*|j|ddkr*|j|S|j| SdS)z)Round down unless digit prec-1 is 0 or 5.r-Z05N)r8r)r.r@r'r'r) _round_05ups zDecimal._round_05uprrrrrrrrcCs|dk rGt|ts'tdtdd| }|j|S|jrw|jrktdn tdt|j dt S)aRound self to the nearest integer, or to a given precision. If only one argument is supplied, round a finite Decimal instance self to the nearest integer. If self is infinite or a NaN then a Python exception is raised. If self is finite and lies exactly halfway between two integers then it is rounded to the integer with even last digit. >>> round(Decimal('123.456')) 123 >>> round(Decimal('-456.789')) -457 >>> round(Decimal('-3.0')) -3 >>> round(Decimal('2.5')) 2 >>> round(Decimal('3.5')) 4 >>> round(Decimal('Inf')) Traceback (most recent call last): ... OverflowError: cannot round an infinity >>> round(Decimal('NaN')) Traceback (most recent call last): ... ValueError: cannot round a NaN If a second argument n is supplied, self is rounded to n decimal places using the rounding mode for the current context. For an integer n, round(self, -n) is exactly equivalent to self.quantize(Decimal('1En')). >>> round(Decimal('123.456'), 0) Decimal('123') >>> round(Decimal('123.456'), 2) Decimal('123.46') >>> round(Decimal('123.456'), -2) Decimal('1E+2') >>> round(Decimal('-Infinity'), 37) Decimal('NaN') >>> round(Decimal('sNaN123'), 0) Decimal('NaN123') Nz+Second argument to round should be integralr%rzcannot round a NaNzcannot round an infinity) r^rSrpr6quantizerPrrjrrr)r.r5rUr'r'r) __round__s/      zDecimal.__round__cCsF|jr0|jr$tdn tdt|jdtS)zReturn the floor of self, as an integer. For a finite Decimal instance self, return the greatest integer n such that n <= self. If self is infinite or a NaN then a Python exception is raised. zcannot round a NaNzcannot round an infinityr%)rPrrjrrSrr)r.r'r'r) __floor__Ws    zDecimal.__floor__cCsF|jr0|jr$tdn tdt|jdtS)zReturn the ceiling of self, as an integer. For a finite Decimal instance self, return the least integer n such that n >= self. If self is infinite or a NaN then a Python exception is raised. zcannot round a NaNzcannot round an infinityr%)rPrrjrrSrr)r.r'r'r)__ceil__fs    zDecimal.__ceil__cCst|dd}t|dd}|js6|jr7|dkrKt}|jdkrm|jtd|S|jdkr|jtd|S|jdkr|}qy|jdkr|}qy|jdkr|s|jtdSt|j|jA}qy|jdkry|s |jtd St|j|jA}nBt|j|jAt t |j t |j |j|j}|j ||S) a:Fused multiply-add. Returns self*other+third with no rounding of the intermediate product self*other. self and other are multiplied together, with no rounding of the result. The third operand is then added to the result, and a single final rounding is performed. rTNrXrr5rYzINF * 0 in fmaz0 * INF in fma) rrPrrOrbr r<r7r6r_rSr8r)r.rZthirdr/productr'r'r)fmaus6       z Decimal.fmac Cst|}|tkr|St|}|tkr8|S|dkrMt}|j}|j}|j}|s|s|r|dkr|jtd|S|dkr|jtd|S|dkr|jtd|S|r|j|S|r|j|S|j|S|jo4|jo4|jsG|jtdS|dkrc|jtdS|sy|jtdS|j|j kr|jtdS| r| r|jtd S|j rd}n |j }t t |}t|j}t|j} |j |td |j||}x)t| jD]} t|d |}qDWt|| j |}t|t|dS) z!Three argument version of __pow__Nr+rz@pow() 3rd argument not allowed unless all arguments are integersr%zApow() 2nd argument cannot be negative when 3rd argument specifiedzpow() 3rd argument cannot be 0zSinsufficient precision: pow() 3rd argument must not have more than precision digitszXat least one of pow() 1st argument and 2nd argument must be nonzero ;0**0 is not definedr)rrrrrbr r9 _isintegerrr@_isevenr7rfrSrgto_integral_valuerrUranger6r_) r.rmodulor/rrZ modulo_is_nanr=baseexponentir'r'r) _power_modulosl                              $zDecimal._power_modulocCs9t|}|j|j}}x(|ddkrI|d}|d7}q"Wt|}|j|j}}x(|ddkr|d}|d7}qlW|dkrs||9}x(|ddkr|d}|d7}qW|dkrdS|d|} |jdkr | } |jrQ|jdkrQ|jt|} t| | |d} nd} tddd| | | S|jdkrv|d} | dkrF|| @|krdSt |d} |d d }|t t |krdSt | ||} t |||}| dks%|dkr)dS| |kr9dSd | }n| d kr=t |dd } t d | |\}}|rdSx(|d dkr|d }| d8} qW|dd}|t t |krdSt | ||} t |||}| dks|dkr dS| |kr0dSd| }ndS|d|krUdS| |}tdt ||S|dkr|d|d}}n|dkrt t t||| krdSt |}|dkr t t t||| kr dS|d| }}x<|d|dko@dknr\|d}|d}q!Wx<|d |d kodknr|d }|d }q`W|dkrk|dkr||krdSt ||\}}|dkrdSdt | | >}xGt |||d\}}||kr/Pq||d||}qW||ko^|dksedS|}|dkr||dt|krdS||}||9}|d|krdSt |}|jr|jdkr|jt|} t|| |t |} nd} td|d| || S)ahAttempt to compute self**other exactly. Given Decimals self and other and an integer p, attempt to compute an exact result for the power self**other, with p digits of precision. Return None if self**other is not exactly representable in p digits. Assumes that elimination of special cases has already been performed: self and other must both be nonspecial; self must be positive and not numerically equal to 1; other must be nonzero. For efficiency, other._exp should not be too large, so that 10**abs(other._exp) is a feasible calculation.rr%r-NrrQr+r]ArwrZd)r+rrr)rgrSrUr=rr7rOrr6_nbitsrdr__decimal_lshift_exactrrf _log10_lb)r.rpxxcxeyycyerrZzerosZ last_digitrZemaxrrsr5Zxc_bitsremarrZstr_xcr'r'r) _power_exacts:                  / /' '    &    zDecimal._power_exactcCs|dk r|j|||St|}|tkr;|S|dkrPt}|j||}|rl|S|s|s|jtdStSd}|jdkr|j r|j sd}n|r|jtdS|j }|s|jdkr t |ddSt |S|jrD|jdkr4t |St |ddS|tkr|j r|jdkrtd}n'||jkr|j}n t|}|j|}|d|jkrd|j}|jtn'|jt|jtd|j}t |dd| |S|j}|jrc|jdk|dkkr[t |ddSt |Sd}d} |j|j} |dk|jdkkr| tt|jkrt |d|jd}n;|j} | tt| krt |d| d}|dkrm|j||jd}|dk rm|dkrgt d|j|j}d } |dkrN|j} t|} | j| j}}t|}|j|j}}|jdkr| }d }xWt||||| |\}}|d d tt|| dr(P|d 7}qWt |t||}| r|j rt|j|jkr|jdt|j}t |j|jd||j|}|j }|j!xt"D]}d|j#| 0rrTrw)rrPrrr7rr6rOrrbr r@rgrUrSrdr8rr_ _shallow_copy _set_roundingrr?)r.r/r;r@oprclrrrr5rr?r'r'r)sqrt s`                       z Decimal.sqrtcCs t|dd}|dkr't}|js9|jr|j}|j}|s]|r|dkr|dkr|j|S|dkr|dkr|j|S|j||S|j|}|dkr|j|}|dkr|}n|}|j|S)zReturns the larger value. Like max(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. rTNr-r%r)rrrPrrrr compare_total)r.rr/snonr)r;r'r'r)r s&          z Decimal.maxcCs t|dd}|dkr't}|js9|jr|j}|j}|s]|r|dkr|dkr|j|S|dkr|dkr|j|S|j||S|j|}|dkr|j|}|dkr|}n|}|j|S)zReturns the smaller value. Like min(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. rTNr-r%r)rrrPrrrrr,)r.rr/r-r.r)r;r'r'r)r s&          z Decimal.mincCsJ|jr dS|jdkr dS|j|jd}|dt|kS)z"Returns whether self is an integerFr%TNrQ)rPrOr8rd)r.restr'r'r)r? s  zDecimal._isintegercCs2| s|jdkrdS|jd|jdkS)z:Returns True if self is even. Assumes self is an integer.r%Tr-rr)rOr8)r.r'r'r)rH szDecimal._isevenc Cs9y|jt|jdSWntk r4dSYnXdS)z$Return the adjusted exponent of selfr-r%N)rOrdr8rp)r.r'r'r)rN s zDecimal.adjustedcCs|S)zReturns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. r')r.r'r'r) canonicalV szDecimal.canonicalcCsAt|dd}|j||}|r.|S|j|d|S)zCompares self to the other operand numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. rTr/)rrr)r.rr/r;r'r'r)compare_signal^ s zDecimal.compare_signalcCst|dd}|jr)|j r)tS|j r@|jr@tS|j}|j}|j}|sm|rj||krt|j|jf}t|j|jf}||kr|rtStS||kr|rtStStS|r*|dkrtS|dkrtS|dkrtS|dkrjtSn@|dkr:tS|dkrJtS|dkrZtS|dkrjtS||krztS||krtS|j|jkr|rtStS|j|jkr|rtStStS)zCompares self to other using the abstract representations. This is not like the standard compare, which use their numerical value. Note that a total ordering is defined for all possible abstract representations. rTr-r+) rr7 _NegativeOnerrrdr8_ZerorO)r.rr/r=Zself_nanZ other_nanZself_keyZ other_keyr'r'r)r,j sf                 zDecimal.compare_totalcCs7t|dd}|j}|j}|j|S)zCompares self to other using abstract repr., ignoring sign. Like compare_total, but with operand's sign ignored and assumed to be 0. rT)rrr,)r.rr/ror'r'r)compare_total_mag s  zDecimal.compare_total_magcCstd|j|j|jS)z'Returns a copy with the sign set to 0. r%)r6r8rOrP)r.r'r'r)r szDecimal.copy_abscCsE|jr%td|j|j|jStd|j|j|jSdS)z&Returns a copy with the sign inverted.r%r-N)r7r6r8rOrP)r.r'r'r)r s zDecimal.copy_negatecCs1t|dd}t|j|j|j|jS)z$Returns self with the sign of other.rT)rr6r7r8rOrP)r.rr/r'r'r) copy_sign szDecimal.copy_signc Cs|dkrt}|jd|}|r1|S|jd krGtS|sQtS|jdkrmt|S|j}|j}|jdkr|t t |j ddkrt dd|j d}n|jdkr%|t t |j ddkr%t dd|j d}n+|jdkrg|| krgt ddd|dd| }n|jdkr|| dkrt dd|d| d}nt|}|j|j}}|jdkr| }d}xQt||||\} } | d d t t | |dr*P|d7}qWt dt | | }|j}|jt} |j|}| |_|S) zReturns e ** self.Nr/r-r%rZrrQr>rwrr)rrrr3rrr@rr7rdr_rAr6rrgrSrUr=_dexpr&r'rrr?) r.r/r;r adjr(r)rrrrUr?r'r'r)rU sJ     26& " &  z Decimal.expcCsdS)zReturn True if self is canonical; otherwise return False. Currently, the encoding of a Decimal instance is always canonical, so this method returns True for any Decimal. Tr')r.r'r'r) is_canonical szDecimal.is_canonicalcCs|j S)zReturn True if self is finite; otherwise return False. A Decimal instance is considered finite if it is neither infinite nor a NaN. )rP)r.r'r'r) is_finite" szDecimal.is_finitecCs |jdkS)z8Return True if self is infinite; otherwise return False.rY)rO)r.r'r'r)r!* szDecimal.is_infinitecCs |jdkS)z>Return True if self is a qNaN or sNaN; otherwise return False.r5rX)r5rX)rO)r.r'r'r)r. szDecimal.is_nancCs<|js| rdS|dkr)t}|j|jkS)z?Return True if self is a normal number; otherwise return False.FN)rPrr r)r.r/r'r'r) is_normal2 s   zDecimal.is_normalcCs |jdkS)z;Return True if self is a quiet NaN; otherwise return False.r5)rO)r.r'r'r)r: szDecimal.is_qnancCs |jdkS)z8Return True if self is negative; otherwise return False.r-)r7)r.r'r'r) is_signed> szDecimal.is_signedcCs |jdkS)z?Return True if self is a signaling NaN; otherwise return False.rX)rO)r.r'r'r)rB szDecimal.is_snancCs<|js| rdS|dkr)t}|j|jkS)z9Return True if self is subnormal; otherwise return False.FN)rPrrr )r.r/r'r'r) is_subnormalF s   zDecimal.is_subnormalcCs|j o|jdkS)z6Return True if self is a zero; otherwise return False.rQ)rPr8)r.r'r'r)is_zeroN szDecimal.is_zerocCs|jt|jd}|dkrBtt|dddS|dkrnttd|dddSt|}|j|j}}|dkrt|d| }t|}t|t|||kS|ttd| |dS)zCompute a lower bound for the adjusted exponent of self.ln(). In other words, compute r such that self.ln() >= 10**r. Assumes that self is finite and positive and that self != 1. r-rr+r%rr)rOrdr8r_rgrSrU)r.r8r(r)rnumdenr'r'r) _ln_exp_boundR s      zDecimal._ln_exp_boundc Csn|dkrt}|jd|}|r1|S|s;tS|jdkrQtS|tkratS|jdkr|jt dSt |}|j |j }}|j }||jd}xMt|||}|ddttt||drP|d7}qWtt |d ktt|| }|j}|jt} |j|}| |_|S) z/Returns the natural (base e) logarithm of self.Nr/r-zln of a negative valuer+rwrrZr%)rr_NegativeInfinityr _Infinityrr3r7rbr rgrSrUr@rB_dlogrdr_rfr6r&r'rrr?) r.r/r;r(r)rr r#rr?r'r'r)lnk s:      ,+  z Decimal.lncCs|jt|jd}|dkr:tt|dS|dkr^ttd|dSt|}|j|j}}|dkrt|d| }td|}t|t|||kdStd| |}t|||dkdS) zCompute a lower bound for the adjusted exponent of self.log10(). In other words, find r such that self.log10() >= 10**r. Assumes that self is finite and positive and that self != 1. r-r+r%rZ231rr)rOrdr8r_rgrSrU)r.r8r(r)rr@rAr'r'r)r s     "zDecimal._log10_exp_boundc Cs|dkrt}|jd|}|r1|S|s;tS|jdkrQtS|jdkrp|jtdS|jddkr|jdddt |jdkrt |j t |jd}nt |}|j |j}}|j}||jd}xMt|||}|d d t tt||drNP|d 7}qWtt |dktt|| }|j}|jt} |j|}| |_|S) z&Returns the base 10 logarithm of self.Nr/r-zlog10 of a negative valuer%rrQr+rwrrZ)rrrCrrDr7rbr r8rdrrOrgrSrUr@r_dlog10r_rfr6r&r'rrr?) r.r/r;r(r)rr r#rr?r'r'r)log10 s:   =#  ,+  z Decimal.log10cCsy|jd|}|r|S|dkr1t}|jrAtS|sZ|jtddSt|j}|j|S)aM Returns the exponent of the magnitude of self's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of self (as though it were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). r/Nzlogb(0)r-) rrrrDrbr rrr)r.r/r;r'r'r)logb s    z Decimal.logbcCsJ|jdks|jdkr"dSx!|jD]}|dkr,dSq,WdS)zReturn True if self is a logical operand. For being logical, it must be a finite number with a sign of 0, an exponent of 0, and a coefficient whose digits must all be either 0 or 1. r%FZ01T)r7rOr8)r.digr'r'r) _islogical s  zDecimal._islogicalcCs|jt|}|dkr0d||}n |dkrP||j d}|jt|}|dkrd||}n |dkr||j d}||fS)Nr%rQ)r@rd)r.r/opaopbZdifr'r'r) _fill_logical s    zDecimal._fill_logicalcCs|dkrt}t|dd}|j sA|j rN|jtS|j||j|j\}}djddt||D}t d|j dpddS) z;Applies an 'and' operation between self and other's digits.NrTrTcSs2g|](\}}tt|t|@qSr')r_rS).0rbr'r'r) 5 s z'Decimal.logical_and..r%rQ) rrrLrbr rOr8rlzipr6re)r.rr/rMrNrr'r'r) logical_and' s   !%zDecimal.logical_andcCs8|dkrt}|jtdd|jd|S)zInvert all its digits.Nr%r)r logical_xorr6r@)r.r/r'r'r)logical_invert8 s  zDecimal.logical_invertcCs|dkrt}t|dd}|j sA|j rN|jtS|j||j|j\}}djddt||D}t d|j dpddS) z:Applies an 'or' operation between self and other's digits.NrTrTcSs2g|](\}}tt|t|BqSr')r_rS)rPrrQr'r'r)rRM s z&Decimal.logical_or..r%rQ) rrrLrbr rOr8rlrSr6re)r.rr/rMrNrr'r'r) logical_or? s   !%zDecimal.logical_orcCs|dkrt}t|dd}|j sA|j rN|jtS|j||j|j\}}djddt||D}t d|j dpddS) z;Applies an 'xor' operation between self and other's digits.NrTrTcSs2g|](\}}tt|t|AqSr')r_rS)rPrrQr'r'r)rR^ s z'Decimal.logical_xor..r%rQ) rrrLrbr rOr8rlrSr6re)r.rr/rMrNrr'r'r)rUP s   !%zDecimal.logical_xorcCst|dd}|dkr't}|js9|jr|j}|j}|s]|r|dkr|dkr|j|S|dkr|dkr|j|S|j||S|jj|j}|dkr|j|}|dkr|}n|}|j|S)z8Compares the values numerically with their sign ignored.rTNr-r%r) rrrPrrrrrr,)r.rr/r-r.r)r;r'r'r)max_maga s&          zDecimal.max_magcCst|dd}|dkr't}|js9|jr|j}|j}|s]|r|dkr|dkr|j|S|dkr|dkr|j|S|j||S|jj|j}|dkr|j|}|dkr|}n|}|j|S)z8Compares the values numerically with their sign ignored.rTNr-r%r) rrrPrrrrrr,)r.rr/r-r.r)r;r'r'r)min_mag s&          zDecimal.min_magcCs|dkrt}|jd|}|r1|S|jdkrGtS|jdkrvtdd|j|jS|j}|jt |j |j |}||kr|S|j tdd|j d|S)z=Returns the largest representable number smaller than itself.Nr/r-r%r>rr)rrrrCr6r@rrHr'r_ignore_all_flagsrrr)r.r/r;new_selfr'r'r) next_minus s"      zDecimal.next_minuscCs|dkrt}|jd|}|r1|S|jdkrGtS|jdkrvtdd|j|jS|j}|jt |j |j |}||kr|S|j tdd|j d|S)z=Returns the smallest representable number larger than itself.Nr/r-r>r%rr)rrrrDr6r@rrHr'rrZrrr)r.r/r;r[r'r'r) next_plus s"      zDecimal.next_pluscCs7t|dd}|dkr't}|j||}|rC|S|j|}|dkrk|j|S|dkr|j|}n|j|}|jr|jt d|j |jt |jt n\|j |jkr3|jt|jt|jt |jt |s3|jt|S)aReturns the number closest to self, in the direction towards other. The result is the closest representable number to self (excluding self) that is in the direction towards other, unless both have the same value. If the two operands are numerically equal, then the result is a copy of self with the sign set to be the same as the sign of other. rTNr%r-z Infinite result from next_towardr)rrrrr6r]r\rrbrr7r r rr rr r)r.rr/r;Z comparisonr'r'r) next_toward s4               zDecimal.next_towardcCs|jrdS|jr dS|j}|dkr<dS|dkrLdS|jri|jredSdS|dkr~t}|jd |r|jrd Sd S|jrd Sd SdS)aReturns an indication of the class of self. The class is one of the following strings: sNaN NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity rrr-z +Infinityz -Infinityz-Zeroz+ZeroNr/z -Subnormalz +Subnormalz-Normalz+Normalr)rrrr>r7rr=)r.r/infr'r'r) number_class s,           zDecimal.number_classcCs tdS)z'Just returns 10, as this is Decimal, :)r)r)r.r'r'r)radix#sz Decimal.radixcCsP|dkrt}t|dd}|j||}|rC|S|jdkr_|jtS|j t|ko|jkns|jtS|jrt |St|}|j }|jt |}|dkrd||}n|dkr || d}||d|d|}t |j |jdpFd|jS)z5Returns a rotated copy of self, value-of-other times.NrTr%rQ)rrrrOrbr r@rSrrr8rdr6r7re)r.rr/r;torotrotdigtopadZrotatedr'r'r)rotate's,   )        zDecimal.rotatecCs|dkrt}t|dd}|j||}|rC|S|jdkr_|jtSd|j|j}d|j|j}|t|ko|kns|jtS|j rt |St |j |j |jt|}|j|}|S)z>Returns self operand after adding the second value to its exp.NrTr%r+r)rrrrOrbr rAr@rSrrr6r7r8r)r.rr/r;ZliminfZlimsupr}r'r'r)scalebHs"   "   %zDecimal.scalebcCss|dkrt}t|dd}|j||}|rC|S|jdkr_|jtS|j t|ko|jkns|jtS|jrt |St|}|j }|jt |}|dkrd||}n|dkr || d}|dkr,|d|}n"|d|}||j d}t |j |jdpid|jS)z5Returns a shifted copy of self, value-of-other times.NrTr%rQ)rrrrOrbr r@rSrrr8rdr6r7re)r.rr/r;rbrcrdZshiftedr'r'r)ras2   )         z Decimal.shiftcCs|jt|ffS)N) __class__r_)r.r'r'r) __reduce__szDecimal.__reduce__cCs)t|tkr|S|jt|S)N)typerrgr_)r.r'r'r)__copy__szDecimal.__copy__cCs)t|tkr|S|jt|S)N)rirrgr_)r.memor'r'r) __deepcopy__szDecimal.__deepcopy__cCs|dkrt}t|d|}|jr~t|j|}t|j}|ddkrn|d7}t|||S|ddkrddg|j|d<|ddkrt |j|j |j d}|j }|d}|dk ry|dd kr|j |d |}n]|dd krB|j| |}n7|dd kryt|j |kry|j ||}| r|j d kr|dd kr|jd |}|j t|j } |dd kr| r|dk rd |} qSd } nS|dd kr| } n:|dd krS|j d krM| dkrM| } nd } | d krzd} d| |j } nh| t|j kr|j d| t|j } d} n,|j d| pd} |j | d} | | } t|j| | | |S)a|Format a Decimal instance according to the given specifier. The specifier should be a standard format specifier, with the form described in PEP 3101. Formatting types 'e', 'E', 'f', 'F', 'g', 'G', 'n' and '%' are supported. If the formatting type is omitted it defaults to 'g' or 'G', depending on the value of context.capitals. N _localeconvri%gGr+ precisioneEr-zfF%ZgGr%rrQrTi)r_parse_format_specifierrP _format_signr7r_r _format_alignrr6r8rOr?r$rrd_format_number)r.Z specifierr/rmspecr=bodyr?rqrrrtrurUr'r'r) __format__sZ       %&       zDecimal.__format__)rOr8r7rP)r1r2r3r4 __slots__r] classmethodrorrrrrrrrrrrrrrrrrrrrr__radd__rrr__rmul__rrrrrrrrrrrr __trunc__rpropertyrrrr9rrrrrrrrrdictrrrrrrrrrrrr"rr$r%r to_integralr+rrrrrr0r1r,r5rrr6rUr9r:r!rr;rr<rr=r>rBrFrrIrJrLrOrTrVrWrUrXrYr\r]r^r`rarerfrrhrjrlryr'r'r'r)r+s  (   !  @       4 V7; !$K        f        >  ,U = " c*"    I  K         2 3  .* !'   FcCs7tjt}||_||_||_||_|S)zCreate a decimal instance directly, without any validation, normalization (e.g. removal of leading zeros) or argument conversion. This function is for *internal use only*. )r\r]rr7r8rOrP)r=Z coefficientrZspecialr.r'r'r)r6s     r6c@s:eZdZdZddZddZddZdS) rNzContext manager class to support localcontext(). Sets a copy of the supplied context in __enter__() and restores the previous decimal context in __exit__() cCs|j|_dS)N)rH new_context)r.rr'r'r)__init__sz_ContextManager.__init__cCs t|_t|j|jS)N)r saved_contextrr)r.r'r'r) __enter__ s  z_ContextManager.__enter__cCst|jdS)N)rr)r.tvtbr'r'r)__exit__ sz_ContextManager.__exit__N)r1r2r3r4rrrr'r'r'r)rNs   rNc @seZdZdZddddddddddd ZddZddZd d Zd d Zd dZ ddZ ddZ ddZ ddZ ddZeZdddZddZddZdd ZdZd!d"Zd#d$Zd%d&Zd'd(d)Zd*d+Zd,d-Zd.d/Zd0d1Zd2d3Zd4d5Zd6d7Zd8d9Z d:d;Z!d<d=Z"d>d?Z#d@dAZ$dBdCZ%dDdEZ&dFdGZ'dHdIZ(dJdKZ)dLdMZ*dNdOZ+dPdQZ,dRdSZ-dTdUZ.dVdWZ/dXdYZ0dZd[Z1d\d]Z2d^d_Z3d`daZ4dbdcZ5dddeZ6dfdgZ7dhdiZ8djdkZ9dldmZ:dndoZ;dpdqZ<drdsZ=dtduZ>dvdwZ?dxdyZ@dzd{ZAd|d}ZBd~dZCddZDddZEddZFddZGdddZHddZIddZJddZKddZLddZMddZNddZOddZPddZQddZRddZSddZTddZUddZVeVZWdS)raContains the context for a Decimal instance. Contains: prec - precision (for use in rounding, division, square roots..) rounding - rounding type (how you round) traps - If traps[exception] = 1, then the exception is raised when it is caused. Otherwise, a value is substituted in. flags - When an exception is caused, flags[exception] is set. (Whether or not the trap_enabler is set) Should be reset by user of Decimal instance. Emin - Minimum exponent Emax - Maximum exponent capitals - If 1, 1*10^1 is printed as 1E+1. If 0, printed as 1e1 clamp - If 1, change exponents if too high (Default 0) Nc sy t} Wntk rYnX|dk r1|n| j|_|dk rO|n| j|_|dk rm|n| j|_|dk r|n| j|_|dk r|n| j|_|dk r|n| j|_| dkrg|_n | |_dkr| j j |_ nAt t sMt fddt D|_ n |_ dkrzt jt d|_nAt t st fddt D|_n |_dS)Nc3s'|]}|t|kfVqdS)N)rS)rPr)rr'r) <sz#Context.__init__..r%c3s'|]}|t|kfVqdS)N)rS)rPr)rr'r)rCs)r NameErrorr@r?r rArr_ignored_flagsrrHr^rrfromkeysr) r.r@r?r rArrrrrZdcr')rrr)r#s.      )  )zContext.__init__cCst|tstd||dkrV||krtd||||fnk|dkr||krtd||||fn4||ks||krtd||||ftj|||S)Nz%s must be an integerz-infz%s must be in [%s, %d]. got: %sr_z%s must be in [%d, %s]. got: %sz%s must be in [%d, %d]. got %s)r^rSrprjr\ __setattr__)r.namerrZvminZvmaxr'r'r)_set_integer_checkGs    zContext._set_integer_checkcCst|tstd|x*|D]"}|tkr&td|q&Wx*tD]"}||krStd|qSWtj|||S)Nz%s must be a signal dictz%s is not a valid signal dict)r^rrprKeyErrorr\r)r.rr}keyr'r'r)_set_signal_dictUs    zContext._set_signal_dictcCs@|dkr"|j||ddS|dkrD|j||ddS|dkrf|j||ddS|dkr|j||ddS|d kr|j||ddS|d kr|tkrtd |tj|||S|d ks|d kr |j||S|dkr,tj|||Std|dS)Nr@r-r_r z-infr%rArrr?z%s: invalid rounding moderrrz.'decimal.Context' object has no attribute '%s')r_rounding_modesrpr\rrrL)r.rrrr'r'r)r`s(        zContext.__setattr__cCstd|dS)Nz%s cannot be deleted)rL)r.rr'r'r) __delattr__yszContext.__delattr__c Csodd|jjD}dd|jjD}|j|j|j|j|j|j|j ||ffS)NcSs"g|]\}}|r|qSr'r')rPsigrr'r'r)rR~s z&Context.__reduce__..cSs"g|]\}}|r|qSr'r')rPrrr'r'r)rRs ) ritemsrrgr@r?r rArr)r.rrr'r'r)rh}s zContext.__reduce__cCsg}|jdt|dd|jjD}|jddj|ddd|jjD}|jddj|ddj|d S) zShow the current context.zrContext(prec=%(prec)d, rounding=%(rounding)s, Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, clamp=%(clamp)dcSs%g|]\}}|r|jqSr')r1)rPr|rr'r'r)rRs z$Context.__repr__..zflags=[z, ]cSs%g|]\}}|r|jqSr')r1)rPrrr'r'r)rRs ztraps=[))rkvarsrrrlr)r.rnamesr'r'r)rs zContext.__repr__cCs%x|jD]}d|j|>> context = Context(prec=5, rounding=ROUND_DOWN) >>> context.create_decimal_from_float(3.1415926535897932) Decimal('3.1415') >>> context = Context(prec=5, traps=[Inexact]) >>> context.create_decimal_from_float(3.1415926535897932) Traceback (most recent call last): ... decimal.Inexact: None )rror)r.r|r}r'r'r)create_decimal_from_floatsz!Context.create_decimal_from_floatcCs"t|dd}|jd|S)a[Returns the absolute value of the operand. If the operand is negative, the result is the same as using the minus operation on the operand. Otherwise, the result is the same as using the plus operation on the operand. >>> ExtendedContext.abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.abs(Decimal('101.5')) Decimal('101.5') >>> ExtendedContext.abs(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.abs(-1) Decimal('1') rTr/)rr)r.rr'r'r)rfsz Context.abscCsNt|dd}|j|d|}|tkrFtd|n|SdS)aReturn the sum of the two operands. >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) Decimal('19.00') >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) Decimal('1.02E+4') >>> ExtendedContext.add(1, Decimal(2)) Decimal('3') >>> ExtendedContext.add(Decimal(8), 5) Decimal('13') >>> ExtendedContext.add(5, 5) Decimal('10') rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrr'r'r)add)s  z Context.addcCst|j|S)N)r_r)r.rr'r'r)_apply>szContext._applycCs%t|tstd|jS)zReturns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. >>> ExtendedContext.canonical(Decimal('2.50')) Decimal('2.50') z,canonical requires a Decimal as an argument.)r^rrpr0)r.rr'r'r)r0As  zContext.canonicalcCs%t|dd}|j|d|S)aCompares values numerically. If the signs of the operands differ, a value representing each operand ('-1' if the operand is less than zero, '0' if the operand is zero or negative zero, or '1' if the operand is greater than zero) is used in place of that operand for the comparison instead of the actual operand. The comparison is then effected by subtracting the second operand from the first and then returning a value according to the result of the subtraction: '-1' if the result is less than zero, '0' if the result is zero or negative zero, or '1' if the result is greater than zero. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) Decimal('0') >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) Decimal('1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) Decimal('1') >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) Decimal('-1') >>> ExtendedContext.compare(1, 2) Decimal('-1') >>> ExtendedContext.compare(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare(1, Decimal(2)) Decimal('-1') rTr/)rr)r.rrQr'r'r)rNs!zContext.comparecCs%t|dd}|j|d|S)aCompares the values of the two operands numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. >>> c = ExtendedContext >>> c.compare_signal(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) Decimal('NaN') >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) Decimal('NaN') >>> print(c.flags[InvalidOperation]) 1 >>> c.compare_signal(-1, 2) Decimal('-1') >>> c.compare_signal(Decimal(-1), 2) Decimal('-1') >>> c.compare_signal(-1, Decimal(2)) Decimal('-1') rTr/)rr1)r.rrQr'r'r)r1rs zContext.compare_signalcCst|dd}|j|S)a+Compares two operands using their abstract representation. This is not like the standard compare, which use their numerical value. Note that a total ordering is defined for all possible abstract representations. >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) Decimal('0') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) Decimal('1') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) Decimal('-1') >>> ExtendedContext.compare_total(1, 2) Decimal('-1') >>> ExtendedContext.compare_total(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare_total(1, Decimal(2)) Decimal('-1') rT)rr,)r.rrQr'r'r)r,szContext.compare_totalcCst|dd}|j|S)zCompares two operands using their abstract representation ignoring sign. Like compare_total, but with operand's sign ignored and assumed to be 0. rT)rr5)r.rrQr'r'r)r5szContext.compare_total_magcCst|dd}|jS)aReturns a copy of the operand with the sign set to 0. >>> ExtendedContext.copy_abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.copy_abs(-1) Decimal('1') rT)rr)r.rr'r'r)rs zContext.copy_abscCst|dd}t|S)aReturns a copy of the decimal object. >>> ExtendedContext.copy_decimal(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_decimal(Decimal('-1.00')) Decimal('-1.00') >>> ExtendedContext.copy_decimal(1) Decimal('1') rT)rr)r.rr'r'r) copy_decimals zContext.copy_decimalcCst|dd}|jS)a(Returns a copy of the operand with the sign inverted. >>> ExtendedContext.copy_negate(Decimal('101.5')) Decimal('-101.5') >>> ExtendedContext.copy_negate(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.copy_negate(1) Decimal('-1') rT)rr)r.rr'r'r)rs zContext.copy_negatecCst|dd}|j|S)aCopies the second operand's sign to the first one. In detail, it returns a copy of the first operand with the sign equal to the sign of the second operand. >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(1, -2) Decimal('-1') >>> ExtendedContext.copy_sign(Decimal(1), -2) Decimal('-1') >>> ExtendedContext.copy_sign(1, Decimal(-2)) Decimal('-1') rT)rr6)r.rrQr'r'r)r6szContext.copy_signcCsNt|dd}|j|d|}|tkrFtd|n|SdS)aDecimal division in a specified context. >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) Decimal('0.333333333') >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) Decimal('0.666666667') >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) Decimal('2.5') >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) Decimal('0.1') >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) Decimal('1') >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) Decimal('4.00') >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) Decimal('1.20') >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) Decimal('10') >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) Decimal('1000') >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) Decimal('1.20E+6') >>> ExtendedContext.divide(5, 5) Decimal('1') >>> ExtendedContext.divide(Decimal(5), 5) Decimal('1') >>> ExtendedContext.divide(5, Decimal(5)) Decimal('1') rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrr'r'r)divides  zContext.dividecCsNt|dd}|j|d|}|tkrFtd|n|SdS)a/Divides two numbers and returns the integer part of the result. >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) Decimal('0') >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) Decimal('3') >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) Decimal('3') >>> ExtendedContext.divide_int(10, 3) Decimal('3') >>> ExtendedContext.divide_int(Decimal(10), 3) Decimal('3') >>> ExtendedContext.divide_int(10, Decimal(3)) Decimal('3') rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrr'r'r) divide_ints  zContext.divide_intcCsNt|dd}|j|d|}|tkrFtd|n|SdS)aReturn (a // b, a % b). >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) (Decimal('2'), Decimal('2')) >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(Decimal(8), 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, Decimal(4)) (Decimal('2'), Decimal('0')) rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrr'r'r)r5s  zContext.divmodcCs"t|dd}|jd|S)a#Returns e ** a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.exp(Decimal('-Infinity')) Decimal('0') >>> c.exp(Decimal('-1')) Decimal('0.367879441') >>> c.exp(Decimal('0')) Decimal('1') >>> c.exp(Decimal('1')) Decimal('2.71828183') >>> c.exp(Decimal('0.693147181')) Decimal('2.00000000') >>> c.exp(Decimal('+Infinity')) Decimal('Infinity') >>> c.exp(10) Decimal('22026.4658') rTr/)rrU)r.rr'r'r)rUJsz Context.expcCs(t|dd}|j||d|S)a Returns a multiplied by b, plus c. The first two operands are multiplied together, using multiply, the third operand is then added to the result of that multiplication, using add, all with only one final rounding. >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) Decimal('22') >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) Decimal('-8') >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) Decimal('1.38435736E+12') >>> ExtendedContext.fma(1, 3, 4) Decimal('7') >>> ExtendedContext.fma(1, Decimal(3), 4) Decimal('7') >>> ExtendedContext.fma(1, 3, Decimal(4)) Decimal('7') rTr/)rr)r.rrQr)r'r'r)rbsz Context.fmacCs%t|tstd|jS)aReturn True if the operand is canonical; otherwise return False. Currently, the encoding of a Decimal instance is always canonical, so this method returns True for any Decimal. >>> ExtendedContext.is_canonical(Decimal('2.50')) True z/is_canonical requires a Decimal as an argument.)r^rrpr9)r.rr'r'r)r9ys  zContext.is_canonicalcCst|dd}|jS)a,Return True if the operand is finite; otherwise return False. A Decimal instance is considered finite if it is neither infinite nor a NaN. >>> ExtendedContext.is_finite(Decimal('2.50')) True >>> ExtendedContext.is_finite(Decimal('-0.3')) True >>> ExtendedContext.is_finite(Decimal('0')) True >>> ExtendedContext.is_finite(Decimal('Inf')) False >>> ExtendedContext.is_finite(Decimal('NaN')) False >>> ExtendedContext.is_finite(1) True rT)rr:)r.rr'r'r)r:szContext.is_finitecCst|dd}|jS)aUReturn True if the operand is infinite; otherwise return False. >>> ExtendedContext.is_infinite(Decimal('2.50')) False >>> ExtendedContext.is_infinite(Decimal('-Inf')) True >>> ExtendedContext.is_infinite(Decimal('NaN')) False >>> ExtendedContext.is_infinite(1) False rT)rr!)r.rr'r'r)r!s zContext.is_infinitecCst|dd}|jS)aOReturn True if the operand is a qNaN or sNaN; otherwise return False. >>> ExtendedContext.is_nan(Decimal('2.50')) False >>> ExtendedContext.is_nan(Decimal('NaN')) True >>> ExtendedContext.is_nan(Decimal('-sNaN')) True >>> ExtendedContext.is_nan(1) False rT)rr)r.rr'r'r)rs zContext.is_nancCs"t|dd}|jd|S)aReturn True if the operand is a normal number; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_normal(Decimal('2.50')) True >>> c.is_normal(Decimal('0.1E-999')) False >>> c.is_normal(Decimal('0.00')) False >>> c.is_normal(Decimal('-Inf')) False >>> c.is_normal(Decimal('NaN')) False >>> c.is_normal(1) True rTr/)rr;)r.rr'r'r)r;szContext.is_normalcCst|dd}|jS)aHReturn True if the operand is a quiet NaN; otherwise return False. >>> ExtendedContext.is_qnan(Decimal('2.50')) False >>> ExtendedContext.is_qnan(Decimal('NaN')) True >>> ExtendedContext.is_qnan(Decimal('sNaN')) False >>> ExtendedContext.is_qnan(1) False rT)rr)r.rr'r'r)rs zContext.is_qnancCst|dd}|jS)aReturn True if the operand is negative; otherwise return False. >>> ExtendedContext.is_signed(Decimal('2.50')) False >>> ExtendedContext.is_signed(Decimal('-12')) True >>> ExtendedContext.is_signed(Decimal('-0')) True >>> ExtendedContext.is_signed(8) False >>> ExtendedContext.is_signed(-8) True rT)rr<)r.rr'r'r)r<szContext.is_signedcCst|dd}|jS)aTReturn True if the operand is a signaling NaN; otherwise return False. >>> ExtendedContext.is_snan(Decimal('2.50')) False >>> ExtendedContext.is_snan(Decimal('NaN')) False >>> ExtendedContext.is_snan(Decimal('sNaN')) True >>> ExtendedContext.is_snan(1) False rT)rr)r.rr'r'r)rs zContext.is_snancCs"t|dd}|jd|S)aReturn True if the operand is subnormal; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_subnormal(Decimal('2.50')) False >>> c.is_subnormal(Decimal('0.1E-999')) True >>> c.is_subnormal(Decimal('0.00')) False >>> c.is_subnormal(Decimal('-Inf')) False >>> c.is_subnormal(Decimal('NaN')) False >>> c.is_subnormal(1) False rTr/)rr=)r.rr'r'r)r=szContext.is_subnormalcCst|dd}|jS)auReturn True if the operand is a zero; otherwise return False. >>> ExtendedContext.is_zero(Decimal('0')) True >>> ExtendedContext.is_zero(Decimal('2.50')) False >>> ExtendedContext.is_zero(Decimal('-0E+2')) True >>> ExtendedContext.is_zero(1) False >>> ExtendedContext.is_zero(0) True rT)rr>)r.rr'r'r)r>szContext.is_zerocCs"t|dd}|jd|S)aReturns the natural (base e) logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.ln(Decimal('0')) Decimal('-Infinity') >>> c.ln(Decimal('1.000')) Decimal('0') >>> c.ln(Decimal('2.71828183')) Decimal('1.00000000') >>> c.ln(Decimal('10')) Decimal('2.30258509') >>> c.ln(Decimal('+Infinity')) Decimal('Infinity') >>> c.ln(1) Decimal('0') rTr/)rrF)r.rr'r'r)rF)sz Context.lncCs"t|dd}|jd|S)aReturns the base 10 logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.log10(Decimal('0')) Decimal('-Infinity') >>> c.log10(Decimal('0.001')) Decimal('-3') >>> c.log10(Decimal('1.000')) Decimal('0') >>> c.log10(Decimal('2')) Decimal('0.301029996') >>> c.log10(Decimal('10')) Decimal('1') >>> c.log10(Decimal('70')) Decimal('1.84509804') >>> c.log10(Decimal('+Infinity')) Decimal('Infinity') >>> c.log10(0) Decimal('-Infinity') >>> c.log10(1) Decimal('0') rTr/)rrI)r.rr'r'r)rI?sz Context.log10cCs"t|dd}|jd|S)a4 Returns the exponent of the magnitude of the operand's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of the operand (as though the operand were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). >>> ExtendedContext.logb(Decimal('250')) Decimal('2') >>> ExtendedContext.logb(Decimal('2.50')) Decimal('0') >>> ExtendedContext.logb(Decimal('0.03')) Decimal('-2') >>> ExtendedContext.logb(Decimal('0')) Decimal('-Infinity') >>> ExtendedContext.logb(1) Decimal('0') >>> ExtendedContext.logb(10) Decimal('1') >>> ExtendedContext.logb(100) Decimal('2') rTr/)rrJ)r.rr'r'r)rJ[sz Context.logbcCs%t|dd}|j|d|S)aApplies the logical operation 'and' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) Decimal('1000') >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) Decimal('10') >>> ExtendedContext.logical_and(110, 1101) Decimal('100') >>> ExtendedContext.logical_and(Decimal(110), 1101) Decimal('100') >>> ExtendedContext.logical_and(110, Decimal(1101)) Decimal('100') rTr/)rrT)r.rrQr'r'r)rTuszContext.logical_andcCs"t|dd}|jd|S)a Invert all the digits in the operand. The operand must be a logical number. >>> ExtendedContext.logical_invert(Decimal('0')) Decimal('111111111') >>> ExtendedContext.logical_invert(Decimal('1')) Decimal('111111110') >>> ExtendedContext.logical_invert(Decimal('111111111')) Decimal('0') >>> ExtendedContext.logical_invert(Decimal('101010101')) Decimal('10101010') >>> ExtendedContext.logical_invert(1101) Decimal('111110010') rTr/)rrV)r.rr'r'r)rVszContext.logical_invertcCs%t|dd}|j|d|S)aApplies the logical operation 'or' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) Decimal('1110') >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) Decimal('1110') >>> ExtendedContext.logical_or(110, 1101) Decimal('1111') >>> ExtendedContext.logical_or(Decimal(110), 1101) Decimal('1111') >>> ExtendedContext.logical_or(110, Decimal(1101)) Decimal('1111') rTr/)rrW)r.rrQr'r'r)rWszContext.logical_orcCs%t|dd}|j|d|S)aApplies the logical operation 'xor' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) Decimal('110') >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) Decimal('1101') >>> ExtendedContext.logical_xor(110, 1101) Decimal('1011') >>> ExtendedContext.logical_xor(Decimal(110), 1101) Decimal('1011') >>> ExtendedContext.logical_xor(110, Decimal(1101)) Decimal('1011') rTr/)rrU)r.rrQr'r'r)rUszContext.logical_xorcCs%t|dd}|j|d|S)amax compares two values numerically and returns the maximum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the maximum (closer to positive infinity) of the two operands is chosen as the result. >>> ExtendedContext.max(Decimal('3'), Decimal('2')) Decimal('3') >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) Decimal('3') >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) Decimal('1') >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max(1, 2) Decimal('2') >>> ExtendedContext.max(Decimal(1), 2) Decimal('2') >>> ExtendedContext.max(1, Decimal(2)) Decimal('2') rTr/)rr)r.rrQr'r'r)rsz Context.maxcCs%t|dd}|j|d|S)aCompares the values numerically with their sign ignored. >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) Decimal('-10') >>> ExtendedContext.max_mag(1, -2) Decimal('-2') >>> ExtendedContext.max_mag(Decimal(1), -2) Decimal('-2') >>> ExtendedContext.max_mag(1, Decimal(-2)) Decimal('-2') rTr/)rrX)r.rrQr'r'r)rXszContext.max_magcCs%t|dd}|j|d|S)amin compares two values numerically and returns the minimum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the minimum (closer to negative infinity) of the two operands is chosen as the result. >>> ExtendedContext.min(Decimal('3'), Decimal('2')) Decimal('2') >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) Decimal('-10') >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) Decimal('1.0') >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.min(1, 2) Decimal('1') >>> ExtendedContext.min(Decimal(1), 2) Decimal('1') >>> ExtendedContext.min(1, Decimal(29)) Decimal('1') rTr/)rr)r.rrQr'r'r)rsz Context.mincCs%t|dd}|j|d|S)aCompares the values numerically with their sign ignored. >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) Decimal('-2') >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) Decimal('-3') >>> ExtendedContext.min_mag(1, -2) Decimal('1') >>> ExtendedContext.min_mag(Decimal(1), -2) Decimal('1') >>> ExtendedContext.min_mag(1, Decimal(-2)) Decimal('1') rTr/)rrY)r.rrQr'r'r)rY szContext.min_magcCs"t|dd}|jd|S)aMinus corresponds to unary prefix minus in Python. The operation is evaluated using the same rules as subtract; the operation minus(a) is calculated as subtract('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.minus(Decimal('1.3')) Decimal('-1.3') >>> ExtendedContext.minus(Decimal('-1.3')) Decimal('1.3') >>> ExtendedContext.minus(1) Decimal('-1') rTr/)rr)r.rr'r'r)minus1sz Context.minuscCsNt|dd}|j|d|}|tkrFtd|n|SdS)amultiply multiplies two operands. If either operand is a special value then the general rules apply. Otherwise, the operands are multiplied together ('long multiplication'), resulting in a number which may be as long as the sum of the lengths of the two operands. >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) Decimal('3.60') >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) Decimal('21') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) Decimal('0.72') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) Decimal('-0.0') >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) Decimal('4.28135971E+11') >>> ExtendedContext.multiply(7, 7) Decimal('49') >>> ExtendedContext.multiply(Decimal(7), 7) Decimal('49') >>> ExtendedContext.multiply(7, Decimal(7)) Decimal('49') rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrr'r'r)multiplyBs  zContext.multiplycCs"t|dd}|jd|S)a"Returns the largest representable number smaller than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_minus(Decimal('1')) Decimal('0.999999999') >>> c.next_minus(Decimal('1E-1007')) Decimal('0E-1007') >>> ExtendedContext.next_minus(Decimal('-1.00000003')) Decimal('-1.00000004') >>> c.next_minus(Decimal('Infinity')) Decimal('9.99999999E+999') >>> c.next_minus(1) Decimal('0.999999999') rTr/)rr\)r.rr'r'r)r\bszContext.next_minuscCs"t|dd}|jd|S)aReturns the smallest representable number larger than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_plus(Decimal('1')) Decimal('1.00000001') >>> c.next_plus(Decimal('-1E-1007')) Decimal('-0E-1007') >>> ExtendedContext.next_plus(Decimal('-1.00000003')) Decimal('-1.00000002') >>> c.next_plus(Decimal('-Infinity')) Decimal('-9.99999999E+999') >>> c.next_plus(1) Decimal('1.00000001') rTr/)rr])r.rr'r'r)r]vszContext.next_pluscCs%t|dd}|j|d|S)aReturns the number closest to a, in direction towards b. The result is the closest representable number from the first operand (but not the first operand) that is in the direction towards the second operand, unless the operands have the same value. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.next_toward(Decimal('1'), Decimal('2')) Decimal('1.00000001') >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) Decimal('-0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) Decimal('-1.00000002') >>> c.next_toward(Decimal('1'), Decimal('0')) Decimal('0.999999999') >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) Decimal('0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) Decimal('-1.00000004') >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) Decimal('-0.00') >>> c.next_toward(0, 1) Decimal('1E-1007') >>> c.next_toward(Decimal(0), 1) Decimal('1E-1007') >>> c.next_toward(0, Decimal(1)) Decimal('1E-1007') rTr/)rr^)r.rrQr'r'r)r^s zContext.next_towardcCs"t|dd}|jd|S)anormalize reduces an operand to its simplest form. Essentially a plus operation with all trailing zeros removed from the result. >>> ExtendedContext.normalize(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.normalize(Decimal('-2.0')) Decimal('-2') >>> ExtendedContext.normalize(Decimal('1.200')) Decimal('1.2') >>> ExtendedContext.normalize(Decimal('-120')) Decimal('-1.2E+2') >>> ExtendedContext.normalize(Decimal('120.00')) Decimal('1.2E+2') >>> ExtendedContext.normalize(Decimal('0.00')) Decimal('0') >>> ExtendedContext.normalize(6) Decimal('6') rTr/)rr)r.rr'r'r)rszContext.normalizecCs"t|dd}|jd|S)aReturns an indication of the class of the operand. The class is one of the following strings: -sNaN -NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.number_class(Decimal('Infinity')) '+Infinity' >>> c.number_class(Decimal('1E-10')) '+Normal' >>> c.number_class(Decimal('2.50')) '+Normal' >>> c.number_class(Decimal('0.1E-999')) '+Subnormal' >>> c.number_class(Decimal('0')) '+Zero' >>> c.number_class(Decimal('-0')) '-Zero' >>> c.number_class(Decimal('-0.1E-999')) '-Subnormal' >>> c.number_class(Decimal('-1E-10')) '-Normal' >>> c.number_class(Decimal('-2.50')) '-Normal' >>> c.number_class(Decimal('-Infinity')) '-Infinity' >>> c.number_class(Decimal('NaN')) 'NaN' >>> c.number_class(Decimal('-NaN')) 'NaN' >>> c.number_class(Decimal('sNaN')) 'sNaN' >>> c.number_class(123) '+Normal' rTr/)rr`)r.rr'r'r)r`s/zContext.number_classcCs"t|dd}|jd|S)aPlus corresponds to unary prefix plus in Python. The operation is evaluated using the same rules as add; the operation plus(a) is calculated as add('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.plus(Decimal('1.3')) Decimal('1.3') >>> ExtendedContext.plus(Decimal('-1.3')) Decimal('-1.3') >>> ExtendedContext.plus(-1) Decimal('-1') rTr/)rr)r.rr'r'r)plussz Context.pluscCsQt|dd}|j||d|}|tkrItd|n|SdS)a Raises a to the power of b, to modulo if given. With two arguments, compute a**b. If a is negative then b must be integral. The result will be inexact unless b is integral and the result is finite and can be expressed exactly in 'precision' digits. With three arguments, compute (a**b) % modulo. For the three argument form, the following restrictions on the arguments hold: - all three arguments must be integral - b must be nonnegative - at least one of a or b must be nonzero - modulo must be nonzero and have at most 'precision' digits The result of pow(a, b, modulo) is identical to the result that would be obtained by computing (a**b) % modulo with unbounded precision, but is computed more efficiently. It is always exact. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.power(Decimal('2'), Decimal('3')) Decimal('8') >>> c.power(Decimal('-2'), Decimal('3')) Decimal('-8') >>> c.power(Decimal('2'), Decimal('-3')) Decimal('0.125') >>> c.power(Decimal('1.7'), Decimal('8')) Decimal('69.7575744') >>> c.power(Decimal('10'), Decimal('0.301029996')) Decimal('2.00000000') >>> c.power(Decimal('Infinity'), Decimal('-1')) Decimal('0') >>> c.power(Decimal('Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('Infinity'), Decimal('1')) Decimal('Infinity') >>> c.power(Decimal('-Infinity'), Decimal('-1')) Decimal('-0') >>> c.power(Decimal('-Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('-Infinity'), Decimal('1')) Decimal('-Infinity') >>> c.power(Decimal('-Infinity'), Decimal('2')) Decimal('Infinity') >>> c.power(Decimal('0'), Decimal('0')) Decimal('NaN') >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) Decimal('11') >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) Decimal('-11') >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) Decimal('1') >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) Decimal('11') >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) Decimal('11729830') >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) Decimal('-0') >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) Decimal('1') >>> ExtendedContext.power(7, 7) Decimal('823543') >>> ExtendedContext.power(Decimal(7), 7) Decimal('823543') >>> ExtendedContext.power(7, Decimal(7), 2) Decimal('1') rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrrr'r'r)powers I z Context.powercCs%t|dd}|j|d|S)a Returns a value equal to 'a' (rounded), having the exponent of 'b'. The coefficient of the result is derived from that of the left-hand operand. It may be rounded using the current rounding setting (if the exponent is being increased), multiplied by a positive power of ten (if the exponent is being decreased), or is unchanged (if the exponent is already equal to that of the right-hand operand). Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision then an Invalid operation condition is raised. This guarantees that, unless there is an error condition, the exponent of the result of a quantize is always equal to that of the right-hand operand. Also unlike other operations, quantize will never raise Underflow, even if the result is subnormal and inexact. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) Decimal('2.170') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) Decimal('2.17') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) Decimal('2.2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) Decimal('2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) Decimal('0E+1') >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) Decimal('-Infinity') >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) Decimal('-0') >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) Decimal('-0E+5') >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) Decimal('217.0') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) Decimal('217') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) Decimal('2.2E+2') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) Decimal('2E+2') >>> ExtendedContext.quantize(1, 2) Decimal('1') >>> ExtendedContext.quantize(Decimal(1), 2) Decimal('1') >>> ExtendedContext.quantize(1, Decimal(2)) Decimal('1') rTr/)rr)r.rrQr'r'r)rXs7zContext.quantizecCs tdS)zkJust returns 10, as this is Decimal, :) >>> ExtendedContext.radix() Decimal('10') r)r)r.r'r'r)rasz Context.radixcCsNt|dd}|j|d|}|tkrFtd|n|SdS)aReturns the remainder from integer division. The result is the residue of the dividend after the operation of calculating integer division as described for divide-integer, rounded to precision digits if necessary. The sign of the result, if non-zero, is the same as that of the original dividend. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) Decimal('2.1') >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) Decimal('1.0') >>> ExtendedContext.remainder(22, 6) Decimal('4') >>> ExtendedContext.remainder(Decimal(22), 6) Decimal('4') >>> ExtendedContext.remainder(22, Decimal(6)) Decimal('4') rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrr'r'r)rs  zContext.remaindercCs%t|dd}|j|d|S)aGReturns to be "a - b * n", where n is the integer nearest the exact value of "x / b" (if two integers are equally near then the even one is chosen). If the result is equal to 0 then its sign will be the sign of a. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) Decimal('-0.9') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) Decimal('-2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) Decimal('-0.3') >>> ExtendedContext.remainder_near(3, 11) Decimal('3') >>> ExtendedContext.remainder_near(Decimal(3), 11) Decimal('3') >>> ExtendedContext.remainder_near(3, Decimal(11)) Decimal('3') rTr/)rr)r.rrQr'r'r)rszContext.remainder_nearcCs%t|dd}|j|d|S)aNReturns a rotated copy of a, b times. The coefficient of the result is a rotated copy of the digits in the coefficient of the first operand. The number of places of rotation is taken from the absolute value of the second operand, with the rotation being to the left if the second operand is positive or to the right otherwise. >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) Decimal('400000003') >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) Decimal('12') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) Decimal('891234567') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) Decimal('345678912') >>> ExtendedContext.rotate(1333333, 1) Decimal('13333330') >>> ExtendedContext.rotate(Decimal(1333333), 1) Decimal('13333330') >>> ExtendedContext.rotate(1333333, Decimal(1)) Decimal('13333330') rTr/)rre)r.rrQr'r'r)reszContext.rotatecCst|dd}|j|S)aReturns True if the two operands have the same exponent. The result is never affected by either the sign or the coefficient of either operand. >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) False >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) True >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) False >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) True >>> ExtendedContext.same_quantum(10000, -1) True >>> ExtendedContext.same_quantum(Decimal(10000), -1) True >>> ExtendedContext.same_quantum(10000, Decimal(-1)) True rT)rr")r.rrQr'r'r)r"szContext.same_quantumcCs%t|dd}|j|d|S)a3Returns the first operand after adding the second value its exp. >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) Decimal('0.0750') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) Decimal('7.50') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) Decimal('7.50E+3') >>> ExtendedContext.scaleb(1, 4) Decimal('1E+4') >>> ExtendedContext.scaleb(Decimal(1), 4) Decimal('1E+4') >>> ExtendedContext.scaleb(1, Decimal(4)) Decimal('1E+4') rTr/)rrf)r.rrQr'r'r)rfszContext.scalebcCs%t|dd}|j|d|S)a{Returns a shifted copy of a, b times. The coefficient of the result is a shifted copy of the digits in the coefficient of the first operand. The number of places to shift is taken from the absolute value of the second operand, with the shift being to the left if the second operand is positive or to the right otherwise. Digits shifted into the coefficient are zeros. >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) Decimal('400000000') >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) Decimal('0') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) Decimal('1234567') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) Decimal('345678900') >>> ExtendedContext.shift(88888888, 2) Decimal('888888800') >>> ExtendedContext.shift(Decimal(88888888), 2) Decimal('888888800') >>> ExtendedContext.shift(88888888, Decimal(2)) Decimal('888888800') rTr/)rr)r.rrQr'r'r)r*sz Context.shiftcCs"t|dd}|jd|S)aSquare root of a non-negative number to context precision. If the result must be inexact, it is rounded using the round-half-even algorithm. >>> ExtendedContext.sqrt(Decimal('0')) Decimal('0') >>> ExtendedContext.sqrt(Decimal('-0')) Decimal('-0') >>> ExtendedContext.sqrt(Decimal('0.39')) Decimal('0.624499800') >>> ExtendedContext.sqrt(Decimal('100')) Decimal('10') >>> ExtendedContext.sqrt(Decimal('1')) Decimal('1') >>> ExtendedContext.sqrt(Decimal('1.0')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('1.00')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('7')) Decimal('2.64575131') >>> ExtendedContext.sqrt(Decimal('10')) Decimal('3.16227766') >>> ExtendedContext.sqrt(2) Decimal('1.41421356') >>> ExtendedContext.prec 9 rTr/)rr+)r.rr'r'r)r+Hsz Context.sqrtcCsNt|dd}|j|d|}|tkrFtd|n|SdS)a&Return the difference between the two operands. >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) Decimal('0.23') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) Decimal('0.00') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) Decimal('-0.77') >>> ExtendedContext.subtract(8, 5) Decimal('3') >>> ExtendedContext.subtract(Decimal(8), 5) Decimal('3') >>> ExtendedContext.subtract(8, Decimal(5)) Decimal('3') rTr/zUnable to convert %s to DecimalN)rrrrp)r.rrQrr'r'r)subtracths  zContext.subtractcCs"t|dd}|jd|S)aConvert to a string, using engineering notation if an exponent is needed. Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of the decimal place and may require the addition of either one or two trailing zeros. The operation is not affected by the context. >>> ExtendedContext.to_eng_string(Decimal('123E+1')) '1.23E+3' >>> ExtendedContext.to_eng_string(Decimal('123E+3')) '123E+3' >>> ExtendedContext.to_eng_string(Decimal('123E-10')) '12.3E-9' >>> ExtendedContext.to_eng_string(Decimal('-123E-12')) '-123E-12' >>> ExtendedContext.to_eng_string(Decimal('7E-7')) '700E-9' >>> ExtendedContext.to_eng_string(Decimal('7E+1')) '70' >>> ExtendedContext.to_eng_string(Decimal('0E+1')) '0.00E+3' rTr/)rr)r.rr'r'r)rszContext.to_eng_stringcCs"t|dd}|jd|S)zyConverts a number to a string, using scientific notation. The operation is not affected by the context. rTr/)rr)r.rr'r'r) to_sci_stringszContext.to_sci_stringcCs"t|dd}|jd|S)akRounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting; Inexact and Rounded flags are allowed in this operation. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_exact(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_exact(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) Decimal('-Infinity') rTr/)rr%)r.rr'r'r)r%szContext.to_integral_exactcCs"t|dd}|jd|S)aLRounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting, except that no flags will be set. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_value(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_value(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_value(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_value(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_value(Decimal('-Inf')) Decimal('-Infinity') rTr/)rr)r.rr'r'r)rszContext.to_integral_value)Xr1r2r3r4rrrrrrhrrIrr&rHrjrbrZrrrrrr'rrrfrrr0rr1r,r5rrrr6rrrrUrr9r:r!rr;rr<rr=r>rFrIrJrTrVrWrUrrXrrYrrr\r]r^rr`rrrrarrrer"rfrr+rrrr%rrr'r'r'r)rs   "                   $ #    %                            #  2 P :  & "         c@s7eZdZd ZdddZddZeZdS) rgr=rSrUNcCs|dkr*d|_d|_d|_nct|trf|j|_t|j|_|j|_n'|d|_|d|_|d|_dS)Nr%r-r+)r=rSrUr^rr7r8rO)r.rrr'r'r)rs       z_WorkRep.__init__cCsd|j|j|jfS)Nz (%r, %r, %r))r=rSrU)r.r'r'r)rsz_WorkRep.__repr__)r=rSrU)r1r2r3rzrrrr'r'r'r)rgs  rgcCs|j|jkr!|}|}n |}|}tt|j}tt|j}|jtd||d}||jd|krd|_||_|jd|j|j9_|j|_||fS)zcNormalizes op1, op2 to have the same exp and length of coefficient. Done during addition. r-r+rr)rUrdr_rSr)rrr@ZtmprZtmp_lenZ other_lenrUr'r'r)rs    rcCs{|dkrdS|dkr(|d|Stt|}t|t|jd}|| krjdS|d| SdS)a Given integers n and e, return n * 10**e if it's an integer, else None. The computation is designed to avoid computing large powers of 10 unnecessarily. >>> _decimal_lshift_exact(3, 4) 30000 >>> _decimal_lshift_exact(300, -999999999) # returns None r%rrQN)r_rfrdrstrip)r5rZstr_nZval_nr'r'r)rs   rcCs[|dks|dkr$tdd}x*||krV||| |d?}}q-W|S)zClosest integer to the square root of the positive integer n. a is an initial approximation to the square root. Any positive integer will do for a, but the closer a is to the square root of n the faster convergence will be. r%z3Both arguments to _sqrt_nearest should be positive.r-)rj)r5rrQr'r'r) _sqrt_nearest2s  rcCs7d|>||?}}|d||d@|d@|kS)zGiven an integer x and a nonnegative integer shift, return closest integer to x / 2**shift; use round-to-even in case of a tie. r-r+r')r rrQrr'r'r)_rshift_nearestAsrcCs/t||\}}|d||d@|kS)zaClosest integer to a/b, a and b positive integers; rounds to even in the case of a tie. r+r-)r)rrQrrr'r'r) _div_nearestIsrrc Cs7||}d}x||kr9t|||>|ks_||krt|||?|krt||d>|t||t|||}|d7}qWtdtt|d| }t||}t||}x>t|dddD]&}t||t|||}qWt|||S)aInteger approximation to M*log(x/M), with absolute error boundable in terms only of x/M. Given positive integers x and M, return an integer approximation to M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference between the approximation and the exact result is at most 22. For L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In both cases these are upper bounds on the error; it will usually be much smaller.r%r-rrZir)rfrrrrSrdr_r) r MLr RTZyshiftwr~r'r'r)_ilogQs )&'%$rc Cs|d7}tt|}||||dk}|dkrd|}|||}|dkru|d|9}nt|d| }t||}t|}t|||}||} nd}t|d| } t| |dS)zGiven integers c, e and p with c > 0, p >= 0, compute an integer approximation to 10**p * log10(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.r+r-r%rr)rdr_rr _log10_digits) r)rr r*r|rr~log_dZlog_10Z log_tenpowerr'r'r)rHs       rHc Cs|d7}tt|}||||dk}|dkr|||}|dkrk|d|9}nt|d| }t|d|}nd}|rttt|d}||dkrt|t||d|}qd}nd}t||dS)zGiven integers c, e and p with c > 0, compute an integer approximation to 10**p * log(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.r+r-r%rr)rdr_rrrfr) r)rr r*r|r~rrZ f_log_tenr'r'r)rEs"   $ rEc@s.eZdZdZddZddZdS) _Log10MemoizezClass to compute, store, and allow retrieval of, digits of the constant log(10) = 2.302585.... This constant is needed by Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.cCs d|_dS)NZ/23025850929940456840179914546843642076011014886)rv)r.r'r'r)rsz_Log10Memoize.__init__cCs|dkrtd|t|jkrd}x^d||d}tttd||d}|| dd|krP|d7}q6W|jddd |_t|jd|d S) ztGiven an integer p >= 0, return floor(10**p)*log(10). For example, self.getdigits(3) returns 2302. r%zp should be nonnegativerZrr+rNrQr-r)rjrdrvr_rrrrS)r.r rrrvr'r'r) getdigitss  "z_Log10Memoize.getdigitsN)r1r2r3r4rrr'r'r'r)rs  rc Cst||>|}tdtt|d| }t||}||>}x9t|dddD]!}t|||||}qiWxCt|ddd D]+}||d>}t||||}qW||S) zGiven integers x and M, M > 0, such that x/M is small in absolute value, compute an integer approximation to M*exp(x/M). For 0 <= x/M <= 2.4, the absolute error in the result is bounded by 60 (and is usually much smaller).rrZr-r%r+irrr)rrSrdr_rr) r rrrrr ZMshiftrr~r'r'r)_iexps% rc Cs|d7}td|tt|d}||}||}|dkr^|d|}n|d| }t|t|\}}t|d|}tt|d|d||dfS)aCompute an approximation to exp(c*10**e), with p decimal places of precision. Returns integers d, f such that: 10**(p-1) <= d <= 10**p, and (d-1)*10**f < exp(c*10**e) < (d+1)*10**f In other words, d*10**f is an approximation to exp(c*10**e) with p digits of precision, and with an error in d of at most 1. This is almost, but not quite, the same as the error being < 1ulp: when d = 10**(p-1) the error could be up to 10 ulp.r+r%r-rirZ)rrdr_rrrr) r)rr rrrZcshiftZquotrr'r'r)r7s #   r7c Cs*ttt||}t||||d}||}|dkra||d|}nt||d| }|dkrtt||dk|dkkrd|ddd|} } q d|d| } } n:t||d |d\} } t| d} | d7} | | fS)a5Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that: 10**(p-1) <= c <= 10**p, and (c-1)*10**e < x**y < (c+1)*10**e in other words, c*10**e is an approximation to x**y with p digits of precision, and with an error in c of at most 1. (This is almost, but not quite, the same as the error being < 1ulp: when c == 10**(p-1) we can only guarantee error < 10ulp.) We assume that: x is positive and not equal to 1, and y is nonzero. r-r%r)rdr_rfrErr7) r r rrr rQZlxcrZpcrrUr'r'r)r=s   ( ! rrr2F354(56r?78rr>rwcCs>|dkrtdt|}dt|||dS)z@Compute a lower bound for 100*log10(c) for a positive integer c.r%z0The argument to _log10_lb should be nonnegative.r)rjr_rd)r)Z correctionZstr_cr'r'r)rgs   rcCsht|tr|St|tr,t|S|rNt|trNtj|S|rdtd|tS)zConvert other to Decimal. Verifies that it's ok to use in an implicit construction. If allow_float is true, allow conversion from float; this is used in the comparison methods (__eq__ and friends). zUnable to convert %s to Decimal)r^rrSrnrorpr)rrZ allow_floatr'r'r)rrs  rcCst|tr||fSt|tjru|jsbt|jtt|j |j |j }|t|j fS|rt|tj r|jdkr|j}t|trt}|rd|jt[-+])? # an optional sign, followed by either... ( (?=\d|\.\d) # ...a number (with at least one digit) (?P\d*) # having a (possibly empty) integer part (\.(?P\d*))? # followed by an optional fractional part (E(?P[-+]?\d+))? # followed by an optional exponent, or... | Inf(inity)? # ...an infinity, or... | (?Ps)? # ...an (optionally signaling) NaN # NaN (?P\d*) # with (possibly empty) diagnostic info. ) # \s* \Z z0*$z50*$z\A (?: (?P.)? (?P[<>=^]) )? (?P[-+ ])? (?P\#)? (?P0)? (?P(?!0)\d+)? (?P,)? (?:\.(?P0|(?!0)\d+))? (?P[eEfFgGn%])? \Z cCs tj|}|dkr+td||j}|d}|d}|ddk |d<|dr|dk rtd||dk rtd||pd|d<|pd |d<|d dkrd |d ', '=' or '^' sign: either '+', '-' or ' ' minimumwidth: nonnegative integer giving minimum width zeropad: boolean, indicating whether to pad with zeros thousands_sep: string to use as thousands separator, or '' grouping: grouping for thousands separators, in format used by localeconv decimal_point: string to use for decimal point precision: nonnegative integer giving precision, or None type: one of the characters 'eEfFgG%', or None NzInvalid format specifier: fillalignzeropadz7Fill character conflicts with '0' in format specifier: z2Alignment conflicts with '0' in format specifier:  >r=rR minimumwidthrQrqr%riZgGnr-r5ro thousands_sepzJExplicit thousands separator conflicts with 'n' type in format specifier: grouping decimal_pointrTrZr)_parse_format_specifier_regexmatchrj groupdictrS_locale localeconv)Z format_specrmrsZ format_dictrrr'r'r)rssN                  rsc Cs|d}|d}||t|t|}|d}|dkrY|||}n|dkrv|||}nn|dkr|||}nQ|dkrt|d}|d |||||d }n td |S) zGiven an unpadded, non-aligned numeric string 'body' and sign string 'sign', add padding and alignment conforming to the given format specifier dictionary 'spec' (as produced by parse_format_specifier). rrrqsV                    &          .     0 " ,# % $ +' *          P  % )